These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31904817)

  • 1. SANPolyA: a deep learning method for identifying Poly(A) signals.
    Yu H; Dai Z
    Bioinformatics; 2020 Apr; 36(8):2393-2400. PubMed ID: 31904817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeeReCT-PolyA: a robust and generic deep learning method for PAS identification.
    Xia Z; Li Y; Zhang B; Li Z; Hu Y; Chen W; Gao X
    Bioinformatics; 2019 Jul; 35(14):2371-2379. PubMed ID: 30500881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid model for efficient prediction of poly(A) signals in human genomic DNA.
    Albalawi F; Chahid A; Guo X; Albaradei S; Magana-Mora A; Jankovic BR; Uludag M; Van Neste C; Essack M; Laleg-Kirati TM; Bajic VB
    Methods; 2019 Aug; 166():31-39. PubMed ID: 30991099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(A)-DG: A deep-learning-based domain generalization method to identify cross-species Poly(A) signal without prior knowledge from target species.
    Zheng Y; Wang H; Zhang Y; Gao X; Xing EP; Xu M
    PLoS Comput Biol; 2020 Nov; 16(11):e1008297. PubMed ID: 33151940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepPASTA: deep neural network based polyadenylation site analysis.
    Arefeen A; Xiao X; Jiang T
    Bioinformatics; 2019 Nov; 35(22):4577-4585. PubMed ID: 31081512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TSAPA: identification of tissue-specific alternative polyadenylation sites in plants.
    Ji G; Chen M; Ye W; Zhu S; Ye C; Su Y; Peng H; Wu X
    Bioinformatics; 2018 Jun; 34(12):2123-2125. PubMed ID: 29385403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA.
    Magana-Mora A; Kalkatawi M; Bajic VB
    BMC Genomics; 2017 Aug; 18(1):620. PubMed ID: 28810905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-type biomedical named entity recognition with deep multi-task learning.
    Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J
    Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning for biomedical named entity recognition with neural networks.
    Giorgi JM; Bader GD
    Bioinformatics; 2018 Dec; 34(23):4087-4094. PubMed ID: 29868832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(A) motif prediction using spectral latent features from human DNA sequences.
    Xie B; Jankovic BR; Bajic VB; Song L; Gao X
    Bioinformatics; 2013 Jul; 29(13):i316-25. PubMed ID: 23813000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning.
    Li Z; Li Y; Zhang B; Li Y; Long Y; Zhou J; Zou X; Zhang M; Hu Y; Chen W; Gao X
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):483-495. PubMed ID: 33662629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning on chaos game representation for proteins.
    Löchel HF; Eger D; Sperlea T; Heider D
    Bioinformatics; 2020 Jan; 36(1):272-279. PubMed ID: 31225868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions.
    Liu Q; Fang H; Wang X; Wang M; Li S; Coin LJM; Li F; Song J
    Bioinformatics; 2022 Sep; 38(17):4053-4061. PubMed ID: 35799358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dataset-aware multi-task learning approaches for biomedical named entity recognition.
    Zuo M; Zhang Y
    Bioinformatics; 2020 Aug; 36(15):4331-4338. PubMed ID: 32415963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. movAPA: modeling and visualization of dynamics of alternative polyadenylation across biological samples.
    Ye W; Liu T; Fu H; Ye C; Ji G; Wu X
    Bioinformatics; 2021 Aug; 37(16):2470-2472. PubMed ID: 33258917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of mRNA subcellular localization using deep recurrent neural networks.
    Yan Z; Lécuyer E; Blanchette M
    Bioinformatics; 2019 Jul; 35(14):i333-i342. PubMed ID: 31510698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.