These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 31904845)

  • 1. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction.
    Li J; Zhang S; Liu T; Ning C; Zhang Z; Zhou W
    Bioinformatics; 2020 Apr; 36(8):2538-2546. PubMed ID: 31904845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.
    Li J; Liu T; Wang J; Li Q; Ning C; Yang Y
    Artif Intell Med; 2021 Aug; 118():102115. PubMed ID: 34412838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMCMDA: neural multicategory MiRNA-disease association prediction.
    Wang J; Li J; Yue K; Wang L; Ma Y; Li Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33778850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks.
    Li J; Li Z; Nie R; You Z; Bao W
    Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting miRNA-disease association based on inductive matrix completion.
    Chen X; Wang L; Qu J; Guan NN; Li JQ
    Bioinformatics; 2018 Dec; 34(24):4256-4265. PubMed ID: 29939227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information.
    Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features.
    Yan C; Duan G; Li N; Zhang L; Wu FX; Wang J
    Bioinformatics; 2022 Apr; 38(8):2226-2234. PubMed ID: 35150255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.
    Liang X; Guo M; Jiang L; Fu Y; Zhang P; Chen Y
    Interdiscip Sci; 2024 Jun; 16(2):289-303. PubMed ID: 38286905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-view Multichannel Attention Graph Convolutional Network for miRNA-disease association prediction.
    Tang X; Luo J; Shen C; Lai Z
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational graph auto-encoders for miRNA-disease association prediction.
    Ding Y; Tian LP; Lei X; Liao B; Wu FX
    Methods; 2021 Aug; 192():25-34. PubMed ID: 32798654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of potential disease-associated microRNAs using structural perturbation method.
    Zeng X; Liu L; Lü L; Zou Q
    Bioinformatics; 2018 Jul; 34(14):2425-2432. PubMed ID: 29490018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism.
    Jin C; Shi Z; Lin K; Zhang H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model.
    Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J
    BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs.
    Xuan P; Dong Y; Guo Y; Zhang T; Liu Y
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MCMDA: Matrix completion for MiRNA-disease association prediction.
    Li JQ; Rong ZH; Chen X; Yan GY; You ZH
    Oncotarget; 2017 Mar; 8(13):21187-21199. PubMed ID: 28177900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction.
    Zhu R; Ji C; Wang Y; Cai Y; Wu H
    Front Bioeng Biotechnol; 2020; 8():901. PubMed ID: 32974293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.