These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31904869)
1. Comprehensive model of electromigrative transport in microfluidic paper based analytical devices. Schaumburg F; Kler PA; Berli CLA Electrophoresis; 2020 Apr; 41(7-8):598-606. PubMed ID: 31904869 [TBL] [Abstract][Full Text] [Related]
2. A simple method for the assessment of electrophoretic mobility in porous media. Franck N; Vera Candioti L; Gerlero GS; Urteaga R; Kler PA Electrophoresis; 2024 Apr; 45(7-8):589-598. PubMed ID: 37853649 [TBL] [Abstract][Full Text] [Related]
3. Electrokinetic transport in nanochannels. 1. Theory. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892 [TBL] [Abstract][Full Text] [Related]
5. Optimizing band width and resolution in micro-free flow electrophoresis. Fonslow BR; Bowser MT Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812 [TBL] [Abstract][Full Text] [Related]
6. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels. Tang G; Yang C Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182 [TBL] [Abstract][Full Text] [Related]
7. The effect of obstacle conductivity and electric field on effective mobility and dispersion in electrophoretic transport: a volume averaging approach. Locke BR Electrophoresis; 2002 Aug; 23(16):2745-54. PubMed ID: 12210179 [TBL] [Abstract][Full Text] [Related]
8. Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays. Li ZR; Liu GR; Hadjiconstantinou NG; Han J; Wang JS; Chen YZ Electrophoresis; 2011 Feb; 32(5):506-17. PubMed ID: 21341285 [TBL] [Abstract][Full Text] [Related]
9. A model for Joule heating-induced dispersion in microchip electrophoresis. Wang Y; Lin Q; Mukherjee T Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376 [TBL] [Abstract][Full Text] [Related]
10. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel. Ge Z; Wang W; Yang C Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807 [TBL] [Abstract][Full Text] [Related]
11. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Sridharan S; Zhu J; Hu G; Xuan X Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988 [TBL] [Abstract][Full Text] [Related]
12. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation. Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905 [TBL] [Abstract][Full Text] [Related]
14. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery. Rath D; Toley BJ ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the electroosmotic flow effect on the efficiency of capillary electrophoresis. Andreev VP; Lisin EE Electrophoresis; 1992 Nov; 13(11):832-7. PubMed ID: 1483424 [TBL] [Abstract][Full Text] [Related]
16. Model and verification of electrokinetic flow and transport in a micro-electrophoresis device. Barz DP; Ehrhard P Lab Chip; 2005 Sep; 5(9):949-58. PubMed ID: 16100579 [TBL] [Abstract][Full Text] [Related]
19. Precise electroosmotic flow measurements on paper substrates. Franck N; Schaumburg F; Kler PA; Urteaga R Electrophoresis; 2021 Apr; 42(7-8):975-982. PubMed ID: 33433920 [TBL] [Abstract][Full Text] [Related]
20. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow. Song H; Wang Y; Pant K Microfluid Nanofluidics; 2013 Jan; 14(1-2):371-382. PubMed ID: 23554584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]