These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31904869)

  • 1. Comprehensive model of electromigrative transport in microfluidic paper based analytical devices.
    Schaumburg F; Kler PA; Berli CLA
    Electrophoresis; 2020 Apr; 41(7-8):598-606. PubMed ID: 31904869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for the assessment of electrophoretic mobility in porous media.
    Franck N; Vera Candioti L; Gerlero GS; Urteaga R; Kler PA
    Electrophoresis; 2024 Apr; 45(7-8):589-598. PubMed ID: 37853649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of obstacle conductivity and electric field on effective mobility and dispersion in electrophoretic transport: a volume averaging approach.
    Locke BR
    Electrophoresis; 2002 Aug; 23(16):2745-54. PubMed ID: 12210179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays.
    Li ZR; Liu GR; Hadjiconstantinou NG; Han J; Wang JS; Chen YZ
    Electrophoresis; 2011 Feb; 32(5):506-17. PubMed ID: 21341285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.
    Ge Z; Wang W; Yang C
    Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation.
    Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM
    Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulations of paper-based electrophoretic separations with open-source tools.
    Gerlero GS; Márquez Damián S; Schaumburg F; Franck N; Kler PA
    Electrophoresis; 2021 Aug; 42(16):1543-1551. PubMed ID: 33991437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the electroosmotic flow effect on the efficiency of capillary electrophoresis.
    Andreev VP; Lisin EE
    Electrophoresis; 1992 Nov; 13(11):832-7. PubMed ID: 1483424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model and verification of electrokinetic flow and transport in a micro-electrophoresis device.
    Barz DP; Ehrhard P
    Lab Chip; 2005 Sep; 5(9):949-58. PubMed ID: 16100579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives.
    Channon RB; Nguyen MP; Henry CS; Dandy DS
    Anal Chem; 2019 Jul; 91(14):8966-8972. PubMed ID: 31276368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traveling-wave electrophoresis for microfluidic separations.
    Edwards BF; Timperman AT; Carroll RL; Jo K; Mease JM; Schiffbauer JE
    Phys Rev Lett; 2009 Feb; 102(7):076103. PubMed ID: 19257694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise electroosmotic flow measurements on paper substrates.
    Franck N; Schaumburg F; Kler PA; Urteaga R
    Electrophoresis; 2021 Apr; 42(7-8):975-982. PubMed ID: 33433920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.
    Song H; Wang Y; Pant K
    Microfluid Nanofluidics; 2013 Jan; 14(1-2):371-382. PubMed ID: 23554584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.