BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31904942)

  • 1. A New in Situ Method for Tracing Denitrification in Riparian Groundwater.
    Popp AL; Manning CC; Brennwald MS; Kipfer R
    Environ Sci Technol; 2020 Feb; 54(3):1562-1572. PubMed ID: 31904942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotopologue ratios of N2O and N2 measurements underpin the importance of denitrification in differently N-loaded riparian alder forests.
    Mander U; Well R; Weymann D; Soosaar K; Maddison M; Kanal A; Lõhmus K; Truu J; Augustin J; Tournebize J
    Environ Sci Technol; 2014 Oct; 48(20):11910-8. PubMed ID: 25264900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable membrane contactor sampler for analysis of noble gases in groundwater.
    Matsumoto T; Han LF; Jaklitsch M; Aggarwal PK
    Ground Water; 2013; 51(3):461-8. PubMed ID: 22924615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Anaerobic Ammonium Oxidation (Anammox) in Nitrogen Removal from a Freshwater Aquifer.
    Smith RL; Böhlke JK; Song B; Tobias CR
    Environ Sci Technol; 2015 Oct; 49(20):12169-77. PubMed ID: 26401911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane inlet mass spectrometer for the quasi-continuous on-site analysis of dissolved gases in groundwater.
    Mächler L; Brennwald MS; Kipfer R
    Environ Sci Technol; 2012 Aug; 46(15):8288-96. PubMed ID: 22775356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturated zone denitrification: potential for natural attenuation of nitrate contamination in shallow groundwater under dairy operations.
    Singleton MJ; Esser BK; Moran JE; Hudson GB; McNab WW; Harter T
    Environ Sci Technol; 2007 Feb; 41(3):759-65. PubMed ID: 17328180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland.
    Jahangir MMR; Fenton O; Müller C; Harrington R; Johnston P; Richards KG
    Water Res; 2017 Mar; 111():254-264. PubMed ID: 28088722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess N
    Hinshaw SE; Zhang T; Harrison JA; Dahlgren RA
    Water Res; 2020 Jan; 168():115161. PubMed ID: 31654960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conquering the outdoors with on-site mass spectrometry.
    Mächler L; Brennwald MS; Tyroller L; Livingstone DM; Kipfer R
    Chimia (Aarau); 2014; 68(3):155-9. PubMed ID: 24801847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shallow groundwater denitrification in riparian zones of a headwater agricultural landscape.
    Anderson TR; Groffman PM; Kaushal SS; Walter MT
    J Environ Qual; 2014 Mar; 43(2):732-44. PubMed ID: 25602674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth of the vadose zone controls aquifer biogeochemical conditions and extent of anthropogenic nitrogen removal.
    Szymczycha B; Kroeger KD; Crusius J; Bratton JF
    Water Res; 2017 Oct; 123():794-801. PubMed ID: 28750329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved (15) N tracer approach to study denitrification and nitrogen turnover in soil incubations.
    Scheer C; Meier R; Brüggemann N; Grace PR; Dannenmann M
    Rapid Commun Mass Spectrom; 2016 Sep; 30(18):2017-26. PubMed ID: 27470312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane Sources and Migration Mechanisms in Shallow Groundwaters in Parker and Hood Counties, Texas-A Heavy Noble Gas Analysis.
    Wen T; Castro MC; Nicot JP; Hall CM; Larson T; Mickler P; Darvari R
    Environ Sci Technol; 2016 Nov; 50(21):12012-12021. PubMed ID: 27680396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. River water infiltration enhances denitrification efficiency in riparian groundwater.
    Trauth N; Musolff A; Knöller K; Kaden US; Keller T; Werban U; Fleckenstein JH
    Water Res; 2018 Mar; 130():185-199. PubMed ID: 29223089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the
    Well R; Burkart S; Giesemann A; Grosz B; Köster JR; Lewicka-Szczebak D
    Rapid Commun Mass Spectrom; 2019 Mar; 33(5):437-448. PubMed ID: 30474287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced technique for automated determination of 15N signatures of N2, (N2 +N2O) and N2O in gas samples.
    Lewicka-Szczebak D; Well R; Giesemann A; Rohe L; Wolf U
    Rapid Commun Mass Spectrom; 2013 Jul; 27(13):1548-58. PubMed ID: 23722689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.
    Visser A; Singleton MJ; Hillegonds DJ; Velsko CA; Moran JE; Esser BK
    Rapid Commun Mass Spectrom; 2013 Nov; 27(21):2472-82. PubMed ID: 24097404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Approach To Quantify Air-Water Gas Exchange in Shallow Surface Waters Using High-Resolution Time Series of Dissolved Atmospheric Gases.
    Weber UW; Cook PG; Brennwald MS; Kipfer R; Stieglitz TC
    Environ Sci Technol; 2019 Feb; 53(3):1463-1470. PubMed ID: 30576112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow.
    Chatton E; Labasque T; de La Bernardie J; Guihéneuf N; Bour O; Aquilina L
    Environ Sci Technol; 2017 Jan; 51(2):846-854. PubMed ID: 27936737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive sampling and analyses of common dissolved fixed gases in groundwater.
    Spalding BP; Watson DB
    Environ Sci Technol; 2008 May; 42(10):3766-72. PubMed ID: 18546720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.