These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31904966)

  • 1. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations.
    Zhao J; Kennedy SD; Berger KD; Turner DH
    J Chem Theory Comput; 2020 Mar; 16(3):1968-1984. PubMed ID: 31904966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear Magnetic Resonance Spectra and AMBER OL3 and ROC-RNA Simulations of UCUCGU Reveal Force Field Strengths and Weaknesses for Single-Stranded RNA.
    Zhao J; Kennedy SD; Turner DH
    J Chem Theory Comput; 2022 Feb; 18(2):1241-1254. PubMed ID: 34990548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking AMBER force fields for RNA: comparisons to NMR spectra for single-stranded r(GACC) are improved by revised χ torsions.
    Yildirim I; Stern HA; Tubbs JD; Kennedy SD; Turner DH
    J Phys Chem B; 2011 Jul; 115(29):9261-70. PubMed ID: 21721539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of an AMBER force field for the artificial nucleic acid, LNA, and benchmarking with NMR of L(CAAU).
    Condon DE; Yildirim I; Kennedy SD; Mort BC; Kierzek R; Turner DH
    J Phys Chem B; 2014 Feb; 118(5):1216-28. PubMed ID: 24377321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures and Dynamics of DNA Mini-Dumbbells Are Force Field Dependent.
    Winkler L; Galindo-Murillo R; Cheatham TE
    J Chem Theory Comput; 2023 Apr; 19(8):2198-2212. PubMed ID: 36976268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical Corrections to the Amber RNA Force Field with Target Metadynamics.
    Gil-Ley A; Bottaro S; Bussi G
    J Chem Theory Comput; 2016 Jun; 12(6):2790-8. PubMed ID: 27153317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Analysis of 48 DNA and 48 RNA Tetranucleotides Studied by 1 μs Explicit-Solvent Molecular Dynamics Simulations.
    Schrodt MV; Andrews CT; Elcock AH
    J Chem Theory Comput; 2015 Dec; 11(12):5906-17. PubMed ID: 26580891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics.
    Tubbs JD; Condon DE; Kennedy SD; Hauser M; Bevilacqua PC; Turner DH
    Biochemistry; 2013 Feb; 52(6):996-1010. PubMed ID: 23286901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes.
    Tucker MR; Piana S; Tan D; LeVine MV; Shaw DE
    J Phys Chem B; 2022 Jun; 126(24):4442-4457. PubMed ID: 35694853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides.
    Mlýnský V; Kührová P; Kühr T; Otyepka M; Bussi G; Banáš P; Šponer J
    J Chem Theory Comput; 2020 Jun; 16(6):3936-3946. PubMed ID: 32384244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA force field with accuracy comparable to state-of-the-art protein force fields.
    Tan D; Piana S; Dirks RM; Shaw DE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1346-E1355. PubMed ID: 29378935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How accurate are accurate force-fields for B-DNA?
    Dans PD; Ivani I; Hospital A; Portella G; González C; Orozco M
    Nucleic Acids Res; 2017 Apr; 45(7):4217-4230. PubMed ID: 28088759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitting Corrections to an RNA Force Field Using Experimental Data.
    Cesari A; Bottaro S; Lindorff-Larsen K; Banáš P; Šponer J; Bussi G
    J Chem Theory Comput; 2019 Jun; 15(6):3425-3431. PubMed ID: 31050905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel techniques in nuclear magnetic resonance for nucleic acids.
    Aboul-ela F; Varani G
    Curr Opin Biotechnol; 1995 Feb; 6(1):89-95. PubMed ID: 7534507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force field validation for nucleic acid simulations: comparing energies and dynamics of a DNA dodecamer.
    Jha S; Coveney PV; Laughton CA
    J Comput Chem; 2005 Nov; 26(15):1617-27. PubMed ID: 16170796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of AMBER Force Fields for Simulations of ssDNA.
    Oweida TJ; Kim HS; Donald JM; Singh A; Yingling YG
    J Chem Theory Comput; 2021 Feb; 17(2):1208-1217. PubMed ID: 33434436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained simulations of RNA and DNA duplexes.
    Cragnolini T; Derreumaux P; Pasquali S
    J Phys Chem B; 2013 Jul; 117(27):8047-60. PubMed ID: 23730911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the conformation of the 2'OH group in RNA by NMR spectroscopy and DFT calculations.
    Nozinovic S; Gupta P; Fürtig B; Richter C; Tüllmann S; Duchardt-Ferner E; Holthausen MC; Schwalbe H
    Angew Chem Int Ed Engl; 2011 May; 50(23):5397-400. PubMed ID: 21567668
    [No Abstract]   [Full Text] [Related]  

  • 20. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers.
    Pérez A; Marchán I; Svozil D; Sponer J; Cheatham TE; Laughton CA; Orozco M
    Biophys J; 2007 Jun; 92(11):3817-29. PubMed ID: 17351000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.