These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31905)

  • 21. Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferrimyoglobin.
    Shire SJ; Hanania GI; Gurd FR
    Biochemistry; 1974 Jul; 13(14):2967-74. PubMed ID: 4407621
    [No Abstract]   [Full Text] [Related]  

  • 22. The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin.
    Huber R; Epp O; Steigemann W; Formanek H
    Eur J Biochem; 1971 Mar; 19(1):42-50. PubMed ID: 5102553
    [No Abstract]   [Full Text] [Related]  

  • 23. A comparison of the conformational stabilities of homologous hemoproteins. Myoglobin from several species, human hemoglobin and subunits.
    Puett D; Friebele E; Hammonds RG
    Biochim Biophys Acta; 1973 Dec; 328(2):261-77. PubMed ID: 4776447
    [No Abstract]   [Full Text] [Related]  

  • 24. Natural abundance carbon 13 nuclear magnetic resonance of cyanoferrimyoglobins and of some carboxymethyl derivatives.
    Nigen AM; Keim P; Marshall RC; Glushko V; Lawson PJ; Gurd FR
    J Biol Chem; 1973 May; 248(10):3716-23. PubMed ID: 4735714
    [No Abstract]   [Full Text] [Related]  

  • 25. Proton magnetic resonance spectroscopy of histidine residues in proteins.
    Bradbury JH; Wilairat P
    Biochem Biophys Res Commun; 1967 Oct; 29(1):84-9. PubMed ID: 6055183
    [No Abstract]   [Full Text] [Related]  

  • 26. Carbon 13 nuclear magnetic resonance of peptides in the amino-terminal sequence of sperm whale myoglobin.
    Gurd FR; Lawson PJ; Cochran DW; Wenkert E
    J Biol Chem; 1971 Jun; 246(11):3725-30. PubMed ID: 5103845
    [No Abstract]   [Full Text] [Related]  

  • 27. The prospects for carbon-13 nuclear magnetic resonance studies in enzymology.
    Gurd FR; Keim P
    Methods Enzymol; 1973; 27():836-911. PubMed ID: 4589738
    [No Abstract]   [Full Text] [Related]  

  • 28. Salt effects on ionization equilibria of histidines in myoglobin.
    Kao YH; Fitch CA; Bhattacharya S; Sarkisian CJ; Lecomte JT; García-Moreno E B
    Biophys J; 2000 Sep; 79(3):1637-54. PubMed ID: 10969024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. H NMR probes for inter-segmental hydrogen bonds in myoglobins.
    Yamamoto Y
    J Biochem; 1996 Jul; 120(1):126-32. PubMed ID: 8864854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency dependence of the proton magnetic relaxation in aqueous solutions iof haemoproteins.
    Lahajnar G; Zupancic I; Blinc R; Pifat G; Maricić S
    Biopolymers; 1974 Jun; 13(6):1187-93. PubMed ID: 4852094
    [No Abstract]   [Full Text] [Related]  

  • 31. KINETICS OF THE REVERSIBLE REACTION OF SPERM WHALE MYOGLOBIN WITH ZINC.
    CANN JR
    Biochemistry; 1964 May; 3():714-22. PubMed ID: 14193643
    [No Abstract]   [Full Text] [Related]  

  • 32. Reactivity of the individual tyrosine side chains of myoglobin toward iodination.
    Hermans J; Lu LW
    Arch Biochem Biophys; 1967 Nov; 122(2):331-7. PubMed ID: 6070980
    [No Abstract]   [Full Text] [Related]  

  • 33. THE BINDING OF CUPRIC AND ZINC IONS TO CRYSTALLINE SPERM WHALE MYOGLOBIN.
    BANASZAK LJ; WATSON HC; KENDREW JC
    J Mol Biol; 1965 May; 12():130-7. PubMed ID: 14343272
    [No Abstract]   [Full Text] [Related]  

  • 34. Immunochemistry of sperm whale myoglobin. VII. Correlation of immunochemical cross-reaction of eight myoglobins with structural similarity and its dependence on conformation.
    Atassi MZ; Tarlowski DP; Paull JH
    Biochim Biophys Acta; 1970 Dec; 221(3):623-35. PubMed ID: 5499446
    [No Abstract]   [Full Text] [Related]  

  • 35. THE MODE OF ATTACHMENT OF THE AZIDE ION TO SPERM WHALE METMYOGLOBIN.
    STRYER L; KENDREW JC; WATSON HC
    J Mol Biol; 1964 Jan; 8():96-104. PubMed ID: 14149967
    [No Abstract]   [Full Text] [Related]  

  • 36. Near-heme histidine residues of deoxy- and oxymyoglobins.
    Ohms JP; Hagenmaier H; Hayes MB; Cohen JS
    Biochemistry; 1979 Apr; 18(8):1599-602. PubMed ID: 34431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton nuclear magnetic resonance study of the histidine residues of the Escherichia coli adenosine cyclic 3',5'-phosphate receptor protein. pH titration behavior, deuterium exchange, and partial assignments.
    Clore GM; Gronenborn AM
    Biochemistry; 1982 Aug; 21(17):4048-53. PubMed ID: 6751384
    [No Abstract]   [Full Text] [Related]  

  • 38. The tryptophan microenvironments in apomyoglobin.
    Kirby EP; Steiner RF
    J Biol Chem; 1970 Dec; 245(23):6300-6. PubMed ID: 5484810
    [No Abstract]   [Full Text] [Related]  

  • 39. Anomalous dispersion of the Faraday effect in haemoglobin and myoglobin.
    Volkenstein MV; Sharonov JA; Shemelin AK
    Nature; 1966 Feb; 209(5024):709-10. PubMed ID: 5922131
    [No Abstract]   [Full Text] [Related]  

  • 40. 1H nuclear magnetic resonance titration curves and microenvironments of aromatic residues in bovine pancreatic ribonuclease A.
    Tanokura M
    J Biochem; 1983 Jul; 94(1):51-62. PubMed ID: 6619120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.