These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31905005)

  • 1. Maximum Stacking Base Pairs: Hardness and Approximation by Nonlinear Linear Programming-Rounding.
    Liu L; Jiang H; Liu P; Zhu B; Zhu D
    J Comput Biol; 2020 Feb; 27(2):200-211. PubMed ID: 31905005
    [No Abstract]   [Full Text] [Related]  

  • 2. Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs.
    Ieong S; Kao MY; Lam TW; Sung WK; Yiu SM
    J Comput Biol; 2003; 10(6):981-95. PubMed ID: 14980021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots.
    Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):323-32. PubMed ID: 20431151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K-partite RNA secondary structures.
    Jiang M; Tejada PJ; Lasisi RO; Cheng S; Fechser DS
    J Comput Biol; 2010 Jul; 17(7):915-25. PubMed ID: 20632871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Efficient Dual Sampling Algorithm with Hamming Distance Filtration.
    Barrett C; He Q; Huang FW; Reidys CM
    J Comput Biol; 2018 Nov; 25(11):1179-1192. PubMed ID: 30133328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed.
    Fornace ME; Porubsky NJ; Pierce NA
    ACS Synth Biol; 2020 Oct; 9(10):2665-2678. PubMed ID: 32910644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Predicting RNA secondary structures including pseudoknots by covariance with stacking and minimum free energy].
    Yang J; Luo Z; Fang X; Wang J; Tang K
    Sheng Wu Gong Cheng Xue Bao; 2008 Apr; 24(4):659-64. PubMed ID: 18616179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model.
    Waldispühl J; Clote P
    J Comput Biol; 2007 Mar; 14(2):190-215. PubMed ID: 17456015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA Newton polytope and learnability of energy parameters.
    Forouzmand E; Chitsaz H
    Bioinformatics; 2013 Jul; 29(13):i300-7. PubMed ID: 23812998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing RNA Secondary Structures Is Hard.
    Bonnet É; Rzążewski P; Sikora F
    J Comput Biol; 2020 Mar; 27(3):302-316. PubMed ID: 32160034
    [No Abstract]   [Full Text] [Related]  

  • 12. Linear-Time Algorithms for RNA Structure Prediction.
    Zhang H; Zhang L; Liu K; Li S; Mathews DH; Huang L
    Methods Mol Biol; 2023; 2586():15-34. PubMed ID: 36705896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating chemical footprinting data into RNA secondary structure prediction.
    Zarringhalam K; Meyer MM; Dotu I; Chuang JH; Clote P
    PLoS One; 2012; 7(10):e45160. PubMed ID: 23091593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSRna: Prediction of small RNA secondary structures based on reverse complementary folding method.
    Li J; Xu C; Wang L; Liang H; Feng W; Cai Z; Wang Y; Cong W; Liu Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1643001. PubMed ID: 27045556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact networks in RNA: a structural bioinformatics study with a new tool.
    Roy P; Bhattacharyya D
    J Comput Aided Mol Des; 2022 Feb; 36(2):131-140. PubMed ID: 35059942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments.
    Seemann SE; Gorodkin J; Backofen R
    Nucleic Acids Res; 2008 Nov; 36(20):6355-62. PubMed ID: 18836192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the approximation of optimal structures for RNA-RNA interaction.
    Mneimneh S
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):682-8. PubMed ID: 19875865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.
    Zörnig P
    J Comput Biol; 2015 Aug; 22(8):729-42. PubMed ID: 25525691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
    Sloma MF; Mathews DH
    PLoS Comput Biol; 2017 Nov; 13(11):e1005827. PubMed ID: 29107980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.