These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31905130)

  • 1. Personalizing Activity Recognition Models Through Quantifying Different Types of Uncertainty Using Wearable Sensors.
    Akbari A; Jafari R
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2530-2541. PubMed ID: 31905130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant Change Spotting for Periodic Human Motion Segmentation of Cleaning Tasks Using Wearable Sensors.
    Liu KC; Chan CT
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities.
    Kim KH; Cho SB
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classifier Personalization for Activity Recognition Using Wrist Accelerometers.
    Mannini A; Intille SS
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Meta-Learning Approach for Fast Personalization of Modality Translation Models in Wearable Physiological Sensing.
    Akbari A; Martinez J; Jafari R
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1516-1527. PubMed ID: 34398767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors.
    Huang H; Zhou P; Li Y; Sun F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial Data-Based AI Approaches for ADL and Fall Recognition.
    Martins LM; Ribeiro NF; Soares F; Santos CP
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adopting Graph Neural Networks to Analyze Human-Object Interactions for Inferring Activities of Daily Living.
    Su P; Chen D
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Optimized GRU-ECNN Models for Gait Recognition with Wearable IOT Devices.
    Monica KM; Parvathi R; Gayathri A; Aluvalu R; Sangeetha K; Simha Reddy CV
    Comput Intell Neurosci; 2022; 2022():5422428. PubMed ID: 35602639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian deep learning method for freeway incident detection with uncertainty quantification.
    Liu G; Jin H; Li J; Hu X; Li J
    Accid Anal Prev; 2022 Oct; 176():106796. PubMed ID: 35985178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Organizing IoT Device-Based Smart Diagnosing Assistance System for Activities of Daily Living.
    Park YJ; Jung SY; Son TY; Kang SJ
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33503949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Device Deep Personalization for Robust Activity Data Collection.
    Mairittha N; Mairittha T; Inoue S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring Micro-Activities Using Wearable Sensing for ADL Recognition of Home-Care Patients.
    Sridharan M; Bigham J; Campbell PM; Phillips C; Bodanese E
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):747-759. PubMed ID: 31144647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk.
    Kańtoch E
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel deep neural network based pattern field classification architectures.
    Huang K; Zhang S; Zhang R; Hussain A
    Neural Netw; 2020 Jul; 127():82-95. PubMed ID: 32344155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty Estimation in Unsupervised MR-CT Synthesis of Scoliotic Spines.
    Karthik EN; Cheriet F; Laporte C
    IEEE Open J Eng Med Biol; 2024; 5():421-427. PubMed ID: 38899021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.