These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31905130)

  • 21. Uncertainty Estimation in Unsupervised MR-CT Synthesis of Scoliotic Spines.
    Karthik EN; Cheriet F; Laporte C
    IEEE Open J Eng Med Biol; 2024; 5():421-427. PubMed ID: 38899021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.
    Baldominos A; Saez Y; Isasi P
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of Bathroom Activities in Older Adults Using Wearable Sensors: A Systematic Review and Recommendations.
    Zhang Y; D'Haeseleer I; Coelho J; Vanden Abeele V; Vanrumste B
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep neural networks for wearable sensor-based activity recognition in Parkinson's disease: investigating generalizability and model complexity.
    Davidashvilly S; Cardei M; Hssayeni M; Chi C; Ghoraani B
    Biomed Eng Online; 2024 Feb; 23(1):17. PubMed ID: 38336781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors.
    Airaksinen M; Räsänen O; Ilén E; Häyrinen T; Kivi A; Marchi V; Gallen A; Blom S; Varhe A; Kaartinen N; Haataja L; Vanhatalo S
    Sci Rep; 2020 Jan; 10(1):169. PubMed ID: 31932616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex-valued unsupervised convolutional neural networks for sleep stage classification.
    Zhang J; Wu Y
    Comput Methods Programs Biomed; 2018 Oct; 164():181-191. PubMed ID: 30195426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept.
    Shojaedini SV; Beirami MJ
    Biomed Eng Lett; 2020 Aug; 10(3):419-430. PubMed ID: 32864175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors.
    Nisar MA; Shirahama K; Irshad MT; Huang X; Grzegorzek M
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning personalized ADL recognition models from few raw data.
    Compagnon P; Lefebvre G; Duffner S; Garcia C
    Artif Intell Med; 2020 Jul; 107():101916. PubMed ID: 32828455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition.
    Wei H; Jafari R; Kehtarnavaz N
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smartwatch User Interface Implementation Using CNN-Based Gesture Pattern Recognition.
    Kwon MC; Park G; Choi S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30205509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring Activities of Daily Living in Stroke Patients with Motion Machine Learning Algorithms: A Pilot Study.
    Chen PW; Baune NA; Zwir I; Wang J; Swamidass V; Wong AWK
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33572116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data.
    Papagiannaki A; Zacharaki EI; Kalouris G; Kalogiannis S; Deltouzos K; Ellul J; Megalooikonomou V
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning image features with fewer labels using a semi-supervised deep convolutional network.
    Dos Santos FP; Zor C; Kittler J; Ponti MA
    Neural Netw; 2020 Dec; 132():131-143. PubMed ID: 32871338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating Scalable Uncertainty Estimation Methods for Deep Learning-Based Molecular Property Prediction.
    Scalia G; Grambow CA; Pernici B; Li YP; Green WH
    J Chem Inf Model; 2020 Jun; 60(6):2697-2717. PubMed ID: 32243154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tourist Experiences Recommender System Based on Emotion Recognition with Wearable Data.
    Santamaria-Granados L; Mendoza-Moreno JF; Chantre-Astaiza A; Munoz-Organero M; Ramirez-Gonzalez G
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System.
    Serpush F; Menhaj MB; Masoumi B; Karasfi B
    Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.