These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31905149)

  • 1. Power Wheelchair Navigation Assistance Using Wearable Vibrotactile Haptics.
    Devigne L; Aggravi M; Bivaud M; Balix N; Teodorescu CS; Carlson T; Spreters T; Pacchierotti C; Babel M
    IEEE Trans Haptics; 2020; 13(1):52-58. PubMed ID: 31905149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Getting Your Hands Dirty Outside the Lab: A Practical Primer for Conducting Wearable Vibrotactile Haptics Research.
    Blum JR; Fortin PE; Al Taha F; Alirezaee P; Demers M; Weill-Duflos A; Cooperstock JR
    IEEE Trans Haptics; 2019; 12(3):232-246. PubMed ID: 31352355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Human-Display Interface with Vibrotactile Feedback for Real-World Assistive Applications.
    Kim K; Jeong JH; Cho JH; Kim S; Kang J; Ryu J; Lee SW
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
    Chen D; Song A; Tian L; Fu L; Zeng H
    IEEE Trans Haptics; 2019; 12(3):281-294. PubMed ID: 31180900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices.
    Mun S; Yun S; Nam S; Park SK; Park S; Park BJ; Lim JM; Kyung KU
    IEEE Trans Haptics; 2018; 11(1):15-21. PubMed ID: 29611809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SwarmTouch: Guiding a Swarm of Micro-Quadrotors With Impedance Control Using a Wearable Tactile Interface.
    Tsykunov E; Agishev R; Ibrahimov R; Labazanova L; Tleugazy A; Tsetserukou D
    IEEE Trans Haptics; 2019; 12(3):363-374. PubMed ID: 31295120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks.
    Oh S; Song TE; Mahato M; Kim JS; Yoo H; Lee MJ; Khan M; Yeo WH; Oh IK
    Adv Mater; 2023 Nov; 35(47):e2304442. PubMed ID: 37724828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization Performance of Multiple Vibrotactile Cues on Both Arms.
    Wang D; Peng C; Afzal N; Li W; Wu D; Zhang Y
    IEEE Trans Haptics; 2018; 11(1):97-106. PubMed ID: 28841557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments.
    Bai D; Ju F; Qi F; Cao Y; Wang Y; Chen B
    Proc Inst Mech Eng H; 2019 Feb; 233(2):244-253. PubMed ID: 30595086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.
    Park WH; Shin EJ; Yun S; Kim SY
    IEEE Trans Haptics; 2018; 11(1):22-29. PubMed ID: 29611810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Sensory Stimuli Improve Distinguishability of Cutaneous Haptic Cues.
    Sullivan JL; Dunkelberger N; Bradley J; Young J; Israr A; Lau F; Klumb K; Abnousi F; O'Malley MK
    IEEE Trans Haptics; 2020; 13(2):286-297. PubMed ID: 31217130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanofluidic Instability-Driven Wearable Textile Vibrotactor.
    Fino N; Jumet B; Zook ZA; Preston DJ; O'Malley MK
    IEEE Trans Haptics; 2023; 16(4):530-535. PubMed ID: 37104109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant Frequency Skin Stretch for Wearable Haptics.
    Shull PB; Tan T; Culbertson H; Zhu X; Okamura AM
    IEEE Trans Haptics; 2019; 12(3):247-256. PubMed ID: 31095499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Robot Team Interaction Through Wearable Haptics for Cooperative Manipulation.
    Music S; Salvietti G; Dohmann PBG; Chinello F; Prattichizzo D; Hirche S
    IEEE Trans Haptics; 2019; 12(3):350-362. PubMed ID: 31180872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. User-centered design of a multisensory power wheelchair simulator: towards training and rehabilitation applications.
    Vailland G; Grzeskowiak F; Devigne L; Gaffary Y; Fraudet B; Leblong E; Nouviale F; Pasteau F; Breton RL; Guegan S; Gouranton V; Arnaldi B; Babel M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():77-82. PubMed ID: 31374610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused Vibrotactile Stimuli From a Wearable Sparse Array of Actuators.
    de Vlam V; Wiertlewski M; Vardar Y
    IEEE Trans Haptics; 2023; 16(4):511-517. PubMed ID: 37097798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haptic Enchanters: Attachable and Detachable Vibrotactile Modules and Their Advantages.
    Park G; Cha H; Choi S
    IEEE Trans Haptics; 2019; 12(1):43-55. PubMed ID: 30047899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.