These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31905284)

  • 1. Reinforcing Supramolecular Bonding with Magnetic Dipole Interactions to Assemble Dynamic Nanoparticle Superlattices.
    Santos PJ; Macfarlane RJ
    J Am Chem Soc; 2020 Jan; 142(3):1170-1174. PubMed ID: 31905284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals.
    Park SS; Urbach ZJ; Brisbois CA; Parker KA; Partridge BE; Oh T; Dravid VP; Olvera de la Cruz M; Mirkin CA
    Adv Mater; 2020 Jan; 32(4):e1906626. PubMed ID: 31814172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior.
    Cordeiro MA; Leite ER; Stach EA
    Langmuir; 2016 Nov; 32(44):11606-11614. PubMed ID: 27673391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle Assembly in High Polymer Concentration Solutions Increases Superlattice Stability.
    Lee MS; Alexander-Katz A; Macfarlane RJ
    Small; 2021 Sep; 17(36):e2102107. PubMed ID: 34319651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembling Ordered Crystals with Disperse Building Blocks.
    Santos PJ; Cheung TC; Macfarlane RJ
    Nano Lett; 2019 Aug; 19(8):5774-5780. PubMed ID: 31348659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes.
    Ahniyaz A; Sakamoto Y; Bergström L
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17570-4. PubMed ID: 17978189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interparticle Forces Underlying Nanoparticle Self-Assemblies.
    Luo D; Yan C; Wang T
    Small; 2015 Dec; 11(45):5984-6008. PubMed ID: 26436692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Dipole Interactions on Blocking Temperature and Relaxation Dynamics of Superparamagnetic Iron-Oxide (Fe
    Sadat ME; Bud'ko SL; Ewing RC; Xu H; Pauletti GM; Mast DB; Shi D
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-Grafted Nanoparticles (PGNs) with Adjustable Graft-Density and Interparticle Hydrogen Bonding Interaction.
    Yuan C; Käfer F; Ober CK
    Macromol Rapid Commun; 2022 Jun; 43(12):e2100629. PubMed ID: 34743391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interparticle spacing control in the superlattices of carboxylic acid-capped gold nanoparticles by hydrogen-bonding mediation.
    Yao H; Kojima H; Sato S; Kimura K
    Langmuir; 2004 Nov; 20(23):10317-23. PubMed ID: 15518531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interparticle interactions in glutathione mediated assembly of gold nanoparticles.
    Lim II; Mott D; Ip W; Njoki PN; Pan Y; Zhou S; Zhong CJ
    Langmuir; 2008 Aug; 24(16):8857-63. PubMed ID: 18642936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dictating Nanoparticle Assembly via Systems-Level Control of Molecular Multivalency.
    Santos PJ; Cao Z; Zhang J; Alexander-Katz A; Macfarlane RJ
    J Am Chem Soc; 2019 Sep; 141(37):14624-14632. PubMed ID: 31465688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of CoPt Magnetic Nanoparticle Arrays and its Underlying Forces.
    Bian B; Chen G; Zheng Q; Du J; Lu H; Liu JP; Hu Y; Zhang Z
    Small; 2018 Aug; 14(34):e1801184. PubMed ID: 30058262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly.
    Frankamp BL; Boal AK; Tuominen MT; Rotello VM
    J Am Chem Soc; 2005 Jul; 127(27):9731-5. PubMed ID: 15998077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of superparamagnetic relaxation with magnetic dipole interaction in capped iron-oxide nanoparticles.
    Landers J; Stromberg F; Darbandi M; Schöppner C; Keune W; Wende H
    J Phys Condens Matter; 2015 Jan; 27(2):026002. PubMed ID: 25502104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.