These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31905593)

  • 41. Urban woodland on intensive green roof improved outdoor thermal comfort in subtropical summer.
    Lee LSH; Jim CY
    Int J Biometeorol; 2019 Jul; 63(7):895-909. PubMed ID: 31154507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation.
    Krüger E; Drach P; Broede P
    Int J Biometeorol; 2017 Mar; 61(3):463-475. PubMed ID: 27568191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An anisotropic parameterization scheme for longwave irradiance and its impact on radiant load in urban outdoor settings.
    Wallenberg N; Holmer B; Lindberg F; Rayner D
    Int J Biometeorol; 2023 Apr; 67(4):633-647. PubMed ID: 36826592
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate.
    Lu S; Pang B; Qi Y; Fang K
    Appl Ergon; 2018 Jan; 66():89-97. PubMed ID: 28958434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human thermal physiological and psychological responses under different heating environments.
    Wang Z; Ning H; Ji Y; Hou J; He Y
    J Therm Biol; 2015 Aug; 52():177-86. PubMed ID: 26267512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Field evaluation of thermal and acoustical comfort in eight North-American buildings using embedded radiant systems.
    Dawe M; Karmann C; Schiavon S; Bauman F
    PLoS One; 2021; 16(10):e0258888. PubMed ID: 34699543
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal environment assessment reliability using temperature--humidity indices.
    d'Ambrosio Alfano FR; Palella BI; Riccio G
    Ind Health; 2011; 49(1):95-106. PubMed ID: 20823629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative Study of Using Piloti for Passive Climate Adaptability in a Hot-Summer and Cold-Winter City in China.
    Zhou Z; Deng Q; Yang G; Lin Y
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30304857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors influencing resident and tourist outdoor thermal comfort: A comparative study in China's cold region.
    Tian Y; Hong B; Zhang Z; Wu S; Yuan T
    Sci Total Environ; 2022 Feb; 808():152079. PubMed ID: 34856261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Outdoor thermal performance of heterogeneous urban environment: An indicator-based approach for climate-sensitive planning.
    Mehrotra S; Bardhan R; Ramamritham K
    Sci Total Environ; 2019 Jun; 669():872-886. PubMed ID: 30897443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. To what extent does the air flow initialisation of the ENVI-met model affect human heat stress simulated in a common street canyon?
    Lee H; Mayer H; Kuttler W
    Int J Biometeorol; 2019 Jan; 63(1):73-81. PubMed ID: 30417201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season.
    Wang Y; Bakker F; de Groot R; Wörtche H; Leemans R
    Environ Monit Assess; 2015 Dec; 187(12):732. PubMed ID: 26547322
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China.
    Wu Z; Kong F; Wang Y; Sun R; Chen L
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27941659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.
    Toy S; Kántor N
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1811-1820. PubMed ID: 27796990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of thermal and acoustic environments on human comfort in urban and suburban campuses in the cold region of China.
    Chen P; Dai Y; Zhen M
    Environ Sci Pollut Res Int; 2024 May; 31(21):30735-30749. PubMed ID: 38613760
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How 'hot' is too hot? Evaluating acceptable outdoor thermal comfort ranges in an equatorial urban park.
    Heng SL; Chow WTL
    Int J Biometeorol; 2019 Jun; 63(6):801-816. PubMed ID: 30877393
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal Performance of School Buildings: Impacts beyond Thermal Comfort.
    Su B; Jadresin Milic R; McPherson P; Wu L
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using the Universal Thermal Climate Index (UTCI) for the assessment of bioclimatic conditions in Russia.
    Vinogradova V
    Int J Biometeorol; 2021 Sep; 65(9):1473-1483. PubMed ID: 32383024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between pedestrian-level outdoor thermal comfort and building morphology in a high-density city.
    Wai KM; Yuan C; Lai A; Yu PKN
    Sci Total Environ; 2020 Mar; 708():134516. PubMed ID: 31806333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental investigation of the effect of surgical masks on outdoor thermal comfort in Xiamen, China.
    Zhou Z; Dong L
    Build Environ; 2023 Feb; 229():109893. PubMed ID: 36514557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.