BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31905809)

  • 1. Encapsulated Entomopathogenic Nematodes Can Protect Maize Plants from
    Jaffuel G; Sbaiti I; Turlings TCJ
    Insects; 2019 Dec; 11(1):. PubMed ID: 31905809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-alginate beads as a formulation for the application of entomopathogenic nematodes to control rootworms.
    Kim J; Hiltpold I; Jaffuel G; Sbaiti I; Hibbard BE; Turlings TCJ
    J Pest Sci (2004); 2021; 94(4):1197-1208. PubMed ID: 34720786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm.
    Bruno P; Machado RAR; Glauser G; Köhler A; Campos-Herrera R; Bernal J; Toepfer S; Erb M; Robert CAM; Arce CCM; Turlings TCJ
    Sci Rep; 2020 May; 10(1):8257. PubMed ID: 32427834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root-colonizing bacteria enhance the levels of (E)-β-caryophyllene produced by maize roots in response to rootworm feeding.
    Chiriboga M X; Guo H; Campos-Herrera R; Röder G; Imperiali N; Keel C; Maurhofer M; Turlings TCJ
    Oecologia; 2018 Jun; 187(2):459-468. PubMed ID: 29423754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequestration of cucurbitacins from cucumber plants by
    Bruno P; Arce CCM; Machado RAR; Besomi G; Spescha A; Glauser G; Jaccard C; Benrey B; Turlings TCJ
    J Pest Sci (2004); 2023; 96(3):1061-1075. PubMed ID: 37181825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes.
    Jaffuel G; Imperiali N; Shelby K; Campos-Herrera R; Geisert R; Maurhofer M; Loper J; Keel C; Turlings TCJ; Hibbard BE
    Sci Rep; 2019 Feb; 9(1):3127. PubMed ID: 30816250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioturbation by endogeic earthworms facilitates entomopathogenic nematode movement toward herbivore-damaged maize roots.
    Fattore S; Xiao Z; Godschalx AL; Röder G; Turlings TCJ; Le Bayon RC; Rasmann S
    Sci Rep; 2020 Dec; 10(1):21316. PubMed ID: 33277609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Field Efficacy of
    Modic Š; Žigon P; Kolmanič A; Trdan S; Razinger J
    Insects; 2020 Mar; 11(3):. PubMed ID: 32213940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biology and Management of Pest
    Cabrera Walsh G; Ávila CJ; Cabrera N; Nava DE; de Sene Pinto A; Weber DC
    Insects; 2020 Jul; 11(7):. PubMed ID: 32650377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entomopathogenic nematodes in the European biocontrol market.
    Ehlers RU
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):3-16. PubMed ID: 15149088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of squash domestication on a belowground tritrophic interaction.
    Jaccard C; Marguier NT; Arce CCM; Bruno P; Glauser G; Turlings TCJ; Benrey B
    Plant Environ Interact; 2022 Feb; 3(1):28-39. PubMed ID: 37283693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata.
    Creighton CS; Fassuliotis G
    J Nematol; 1985 Apr; 17(2):150-2. PubMed ID: 19294074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of Metarhizium anisopliae and Entomopathogenic Nematodes to Control Oryctes rhinoceros Larvae in the Rainy Season.
    Indriyanti DR; Widiyaningrum P; Haryuni ; Slamet M; Maretta YA
    Pak J Biol Sci; 2017; 20(7):320-327. PubMed ID: 29023063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of root architecture in foraging behavior of entomopathogenic nematodes.
    Demarta L; Hibbard BE; Bohn MO; Hiltpold I
    J Invertebr Pathol; 2014 Oct; 122():32-9. PubMed ID: 25149039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions among Bt maize, entomopathogens, and rootworm species (Coleoptera: Chrysomelidae) in the field: effects on survival, yield, and root injury.
    Petzold-Maxwell JL; Jaronski ST; Clifton EH; Dunbar MW; Jackson MA; Gassmann AJ
    J Econ Entomol; 2013 Apr; 106(2):622-32. PubMed ID: 23786047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies.
    Guyer A; van Doan C; Maurer C; Machado RAR; Mateo P; Steinauer K; Kesner L; Hoch G; Kahmen A; Erb M; Robert CAM
    J Chem Ecol; 2021 Nov; 47(10-11):889-906. PubMed ID: 34415498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nutritive value of dying maize and Setaria faberi roots for western corn rootworm (Coleoptera: Chrysomelidae) development.
    Olmer KJ; Hibbard BE
    J Econ Entomol; 2008 Oct; 101(5):1547-56. PubMed ID: 18950036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of an Alltech soil health product on entomopathogenic nematodes, root-knot nematodes and on the growth of tomato plants in the greenhouse.
    Pulavarty A; Horgan K; Kakouli-Duarte T
    J Nematol; 2020; 52():1-10. PubMed ID: 32191018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a CO
    Vemmer M; Schumann M; Beitzen-Heineke W; French BW; Vidal S; Patel AV
    Pest Manag Sci; 2016 Nov; 72(11):2136-2145. PubMed ID: 26834068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.