These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31905847)

  • 1. The Adaptive Morphology of
    Gingichashvili S; Duanis-Assaf D; Shemesh M; Featherstone JDB; Feuerstein O; Steinberg D
    Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31905847
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Gingichashvili S; Duanis-Assaf D; Shemesh M; Featherstone JDB; Feuerstein O; Steinberg D
    Front Microbiol; 2017; 8():2072. PubMed ID: 29163384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of biofilm expansion rate of
    Wu J; Li X; Kong R; Wang J; Wang X
    Can J Microbiol; 2023 Dec; 69(12):479-487. PubMed ID: 37379574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography and Expansion Patterns at the Biofilm-Agar Interface in
    Gingichashvili S; Feuerstein O; Steinberg D
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33396528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion maps of Bacillus subtilis biofilms via magnetic resonance imaging highlight a complex network of channels.
    Galdino RV; Benevides CA; Tenório RP
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110905. PubMed ID: 32143011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of the Bacillus subtilis biofilm expansion rate on phenotypes and the morphology under different growing conditions.
    Wang X; Kong Y; Zhao H; Yan X
    Dev Growth Differ; 2019 Sep; 61(7-8):431-443. PubMed ID: 31565797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and analysis of a Bacillus subtilis biofilm comprised of vegetative cells and spores using a modified colony biofilm model.
    Wahlen LK; Mantei JR; DiOrio JP; Jones CM; Pasmore ME
    J Microbiol Methods; 2018 May; 148():181-187. PubMed ID: 29673789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium.
    Gallegos-Monterrosa R; Mhatre E; Kovács ÁT
    Microbiology (Reading); 2016 Nov; 162(11):1922-1932. PubMed ID: 27655338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model.
    Zhang X; Wang X; Nie K; Li M; Sun Q
    Phys Biol; 2016 Jul; 13(4):046002. PubMed ID: 27434099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging.
    Si T; Li B; Zhang K; Xu Y; Zhao H; Sweedler JV
    J Proteome Res; 2016 Jun; 15(6):1955-62. PubMed ID: 27136705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual-Species Biofilm with Emergent Mechanical and Protective Properties.
    Yannarell SM; Grandchamp GM; Chen SY; Daniels KE; Shank EA
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30833350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of manganese on biofilm development of Bacillus subtilis.
    Mhatre E; Troszok A; Gallegos-Monterrosa R; Lindstädt S; Hölscher T; Kuipers OP; Kovács ÁT
    Microbiology (Reading); 2016 Aug; 162(8):1468-1478. PubMed ID: 27267987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Biofilm Aging and Dispersal in
    Bartolini M; Cogliati S; Vileta D; Bauman C; Rateni L; Leñini C; Argañaraz F; Francisco M; Villalba JM; Steil L; Völker U; Grau R
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis.
    Veening JW; Kuipers OP; Brul S; Hellingwerf KJ; Kort R
    J Bacteriol; 2006 Apr; 188(8):3099-109. PubMed ID: 16585769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
    Rizzi A; Roy S; Bellenger JP; Beauregard PB
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothesis for the role of nutrient starvation in biofilm detachment.
    Hunt SM; Werner EM; Huang B; Hamilton MA; Stewart PS
    Appl Environ Microbiol; 2004 Dec; 70(12):7418-25. PubMed ID: 15574944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic microscopical analysis reveals obligate synergy between extracellular matrix components during
    Porter M; Davidson FA; MacPhee CE; Stanley-Wall NR
    Biofilm; 2022 Dec; 4():100082. PubMed ID: 36148433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of wrinkle morphology formation and the evolution of different Bacillus subtilis biofilms.
    Wang X; Hao M; Wang G
    Water Sci Technol; 2016; 73(3):527-34. PubMed ID: 26877034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphologies and phenotypes in Bacillus subtilis biofilms.
    Wang X; Meng S; Han J
    J Microbiol; 2017 Aug; 55(8):619-627. PubMed ID: 28674970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.