These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31905983)

  • 21. Amplifying Photochromic Response in Tungsten Oxide Films with Titanium Oxide and Polyvinylpyrrolidone.
    Kim MS; Yoon JH; Kim HM; Lee DJ; Hirose T; Takeda Y; Kim JP
    Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol).
    Wolcott A; Kuykendall TR; Chen W; Chen S; Zhang JZ
    J Phys Chem B; 2006 Dec; 110(50):25288-96. PubMed ID: 17165974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3.
    Wan L; Sheng J; Chen H; Xu Y
    J Hazard Mater; 2013 Nov; 262():114-20. PubMed ID: 24018136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications.
    Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C
    Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxicological assessment of nano and micron-sized tungsten oxide after 28days repeated oral administration to Wistar rats.
    Chinde S; Grover P
    Mutat Res Genet Toxicol Environ Mutagen; 2017 Jul; 819():1-13. PubMed ID: 28622824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective Synthesis of α-, β-, and γ-Ag
    Alvarez-Roca R; Gouveia AF; de Foggi CC; Lemos PS; Gracia L; da Silva LF; Vergani CE; San-Miguel M; Longo E; Andrés J
    Inorg Chem; 2021 Jan; 60(2):1062-1079. PubMed ID: 33372756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.
    Gar Alalm M; Ookawara S; Fukushi D; Sato A; Tawfik A
    J Hazard Mater; 2016 Jan; 302():225-231. PubMed ID: 26476309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photo-catalytic Killing of HeLa Cancer Cells Using Facile Synthesized Pure and Ag Loaded WO
    AbuMousa RA; Baig U; Gondal MA; AlSalhi MS; Alqahtani FY; Akhtar S; Aleanizy FS; Dastageer MA
    Sci Rep; 2018 Oct; 8(1):15224. PubMed ID: 30323306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photocatalytic decomposition of N
    Reli M; Svoboda L; Šihor M; Troppová I; Pavlovský J; Praus P; Kočí K
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):34839-34850. PubMed ID: 29177995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.
    Wang N; Wang D; Li M; Shi J; Li C
    Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green synthesis and catalytic function of tungsten oxide nanoparticles.
    Wang X; Zheng YF; Yin HY; Song XC
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2501-5. PubMed ID: 21449413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Well-controlled in-situ growth of 2D WO
    Ahmed B; Ojha AK; Singh A; Hirsch F; Fischer I; Patrice D; Materny A
    J Hazard Mater; 2018 Apr; 347():266-278. PubMed ID: 29329009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WO3-metal-gC3N4 (Metal = Cu, Ag, Au).
    Li H; Yu H; Quan X; Chen S; Zhang Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2111-9. PubMed ID: 26728189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of ion doped WO3 photocatalysts through bulk and surface doping.
    Wang X; Pang L; Hu X; Han N
    J Environ Sci (China); 2015 Sep; 35():76-82. PubMed ID: 26354695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocatalytic oxidation of monuron in the suspension of WO3 under the irradiation of UV-visible light.
    Chu W; Rao YF
    Chemosphere; 2012 Mar; 86(11):1079-86. PubMed ID: 22205047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique.
    Cao L; Yuan J; Chen M; Shangguan W
    J Environ Sci (China); 2010; 22(3):454-9. PubMed ID: 20614790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precision pH Sensor Based on WO
    Choi SJ; Savagatrup S; Kim Y; Lang JH; Swager TM
    ACS Sens; 2019 Oct; 4(10):2593-2598. PubMed ID: 31573180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved photoelectrochemical properties of tungsten oxide by modification with plasmonic gold nanoparticles for the non-enzymatic sensing of ethanol.
    Li B; Chen Y; Peng A; Chen X; Chen X
    J Colloid Interface Sci; 2019 Mar; 537():528-535. PubMed ID: 30469120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of nanocrystalline WO3 with a dicationic perylene bisimide: applications to molecular level solar water splitting.
    Ronconi F; Syrgiannis Z; Bonasera A; Prato M; Argazzi R; Caramori S; Cristino V; Bignozzi CA
    J Am Chem Soc; 2015 Apr; 137(14):4630-3. PubMed ID: 25837588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.