BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31905986)

  • 1. Sequential Cell-Processing System by Integrating Hydrodynamic Purification and Dielectrophoretic Trapping for Analyses of Suspended Cancer Cells.
    Park J; Komori T; Uda T; Miyajima K; Fujii T; Kim SH
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31905986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient single cell arraying by integrating acoustophoretic cell pre-concentration and dielectrophoretic cell trapping.
    Kim SH; Antfolk M; Kobayashi M; Kaneda S; Laurell T; Fujii T
    Lab Chip; 2015 Nov; 15(22):4356-63. PubMed ID: 26439940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing.
    Bai Z; Deng Y; Kim D; Chen Z; Xiao Y; Fan R
    ACS Nano; 2020 Jun; 14(6):7412-7424. PubMed ID: 32437127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Retrieval of Individual Cells from Microfluidic Arrays Combining Dielectrophoretic Force and Directed Hydrodynamic Flow.
    Thiriet PE; Pezoldt J; Gambardella G; Keim K; Deplancke B; Guiducci C
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32244902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Trapping and Retrieval of Single Cells Using Microwell Array Devices Combined with Dielectrophoresis.
    Hata M; Suzuki M; Yasukawa T
    Anal Sci; 2021 Jun; 37(6):803-806. PubMed ID: 33952862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electroactive microwell array device to realize simultaneous trapping of single cancer cells and clusters.
    Park J; Park C; Sugitani Y; Fujii T; Kim SH
    Lab Chip; 2022 Aug; 22(16):3000-3007. PubMed ID: 35730687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroactive microwell arrays for highly efficient single-cell trapping and analysis.
    Kim SH; Yamamoto T; Fourmy D; Fujii T
    Small; 2011 Nov; 7(22):3239-47. PubMed ID: 21932278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.
    Li S; Li M; Bougot-Robin K; Cao W; Yeung Yeung Chau I; Li W; Wen W
    Biomicrofluidics; 2013; 7(2):24106. PubMed ID: 24404011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple microfluidic device for detecting the negative dielectrophoresis of DNA labeled microbeads.
    Nakano M; Ding Z; Matsuda K; Xu J; Inaba M; Suehiro J
    Biomicrofluidics; 2019 Nov; 13(6):064109. PubMed ID: 31737158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
    Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A
    Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AC electrokinetic biased deterministic lateral displacement for tunable particle separation.
    Calero V; Garcia-Sanchez P; Honrado C; Ramos A; Morgan H
    Lab Chip; 2019 Apr; 19(8):1386-1396. PubMed ID: 30912779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro.
    Huang HY; Kao WL; Wang YW; Yao DJ
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32717960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic resettability for a microfluidic particulate-based arraying system.
    Sochol RD; Dueck ME; Li S; Lee LP; Lin L
    Lab Chip; 2012 Dec; 12(23):5051-6. PubMed ID: 23042508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid dielectrophoretic system for trapping of microorganisms from water.
    Allahrabbi N; Chia YS; Saifullah MS; Lim KM; Yung LY
    Biomicrofluidics; 2015 May; 9(3):034110. PubMed ID: 26180567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.