These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31906122)

  • 1. Allumo: Preprocessing and Calibration Software for Wearable Accelerometers Used in Posture Tracking.
    Fortin-Côté A; Roy JS; Bouyer L; Jackson P; Campeau-Lecours A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Inertial Sensor System Towards Daily Human Kinematic Gait Analysis: Benchmarking Analysis to MVN BIOMECH.
    Figueiredo J; Carvalho SP; Vilas-Boas JP; Gonçalves LM; Moreno JC; Santos CP
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of calibration methods for accelerometers used in human motion analysis.
    Nez A; Fradet L; Laguillaumie P; Monnet T; Lacouture P
    Med Eng Phys; 2016 Nov; 38(11):1289-1299. PubMed ID: 27590920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring.
    Yu S; Chen H; Brown RA
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1847-1853. PubMed ID: 29990227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the center of rotation using wearable magneto-inertial sensors.
    Crabolu M; Pani D; Raffo L; Cereatti A
    J Biomech; 2016 Dec; 49(16):3928-3933. PubMed ID: 27890536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems.
    Jalal A; Quaid MAK; Tahir SBUD; Kim K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units.
    Cesareo A; Biffi E; Cuesta-Frau D; D'Angelo MG; Aliverti A
    Med Biol Eng Comput; 2020 Apr; 58(4):785-804. PubMed ID: 32002753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Use of Inertial Measurement Units for the Study of Free Living Environment Activity Assessment: A Literature Review.
    Jung S; Michaud M; Oudre L; Dorveaux E; Gorintin L; Vayatis N; Ricard D
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PyTHang: an open-source wearable sensor system for real-time monitoring of head-torso angle for ambulatory applications.
    Gürkan G
    Comput Methods Biomech Biomed Engin; 2021 Jul; 24(9):1003-1018. PubMed ID: 33356562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Monitoring of Joint Angle and Muscle Activity.
    Cotton RJ; Rogers J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():258-263. PubMed ID: 31374639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.
    Duong TTH; Zhang H; Lynch TS; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():145-150. PubMed ID: 31374621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors.
    Airaksinen M; Räsänen O; Ilén E; Häyrinen T; Kivi A; Marchi V; Gallen A; Blom S; Varhe A; Kaartinen N; Haataja L; Vanhatalo S
    Sci Rep; 2020 Jan; 10(1):169. PubMed ID: 31932616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The static accuracy and calibration of inertial measurement units for 3D orientation.
    Brodie MA; Walmsley A; Page W
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):641-8. PubMed ID: 18688763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-real time estimation of angular kinematics using single-axis accelerometers.
    Caroselli A; Bagalà F; Cappello A
    Sensors (Basel); 2013 Jan; 13(1):918-37. PubMed ID: 23322097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.