These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31906158)

  • 1. Non-Technical Loss Detection in Power Grids with Statistical Profile Images Based on Semi-Supervised Learning.
    Li J; Wang F
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel data balancing approach and a deep fractal network with light gradient boosting approach for theft detection in smart grids.
    Naeem A; Javaid N; Aslam Z; Nadeem MI; Ahmed K; Ghadi YY; Alahmadi TJ; Ghamry NA; Eldin SM
    Heliyon; 2023 Sep; 9(9):e18928. PubMed ID: 37681137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNN-BiLSTM-CRF based amalgamated deep learning model for electricity theft detection to secure smart grids.
    Khalid A; Mustafa G; Rana MRR; Alshahrani SM; Alymani M
    PeerJ Comput Sci; 2024; 10():e1872. PubMed ID: 38435567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification.
    Hao Wu ; Prasad S
    IEEE Trans Image Process; 2018 Mar; 27(3):1259-1270. PubMed ID: 29990156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nontechnical Losses Detection Through Coordinated BiWGAN and SVDD.
    Hu T; Guo Q; Sun H; Huang TE; Lan J
    IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):1866-1880. PubMed ID: 32497005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Reinforcement Learning for the Detection of Abnormal Data in Smart Meters.
    Sun S; Liu C; Zhu Y; He H; Xiao S; Wen J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing Unlabeled Data to Detect Electricity Fraud in AMI: A Semisupervised Deep Learning Approach.
    Hu T; Guo Q; Shen X; Sun H; Wu R; Xi H
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3287-3299. PubMed ID: 30714931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An intelligent scheduling control method for smart grid based on deep learning.
    Tong Z; Zhou Y; Xu K
    Math Biosci Eng; 2023 Feb; 20(5):7679-7695. PubMed ID: 37161167
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Tanwar S; Kumari A; Vekaria D; Raboaca MS; Alqahtani F; Tolba A; Neagu BC; Sharma R
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid.
    Radoglou Grammatikis P; Sarigiannidis P; Efstathopoulos G; Panaousis E
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32948064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water Meter Reading for Smart Grid Monitoring.
    Martinelli F; Mercaldo F; Santone A
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branch-based centralized data collection for smart grids using wireless sensor networks.
    Kim K; Jin SI
    Sensors (Basel); 2015 May; 15(5):11854-72. PubMed ID: 26007734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting anomalous electricity consumption with transformer and synthesized anomalies.
    Mu T; Yu Y; Feng G; Luo H; Yang H
    PeerJ Comput Sci; 2023; 9():e1721. PubMed ID: 38077596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomaly Detection in Automatic Meter Intelligence System Using Positive Unlabeled Learning and Multiple Symbolic Aggregate Approximation.
    Nguyen TNA; Vu HT; Dang MT; Kim D; Le AN
    Big Data; 2023 Jun; 11(3):225-238. PubMed ID: 37036805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DIOD: Fast and Efficient Weakly Semi-Supervised Deep Complex ISAR Object Detection.
    Xue B; Tong N
    IEEE Trans Cybern; 2019 Nov; 49(11):3991-4003. PubMed ID: 30059331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning.
    Ross T; Zimmerer D; Vemuri A; Isensee F; Wiesenfarth M; Bodenstedt S; Both F; Kessler P; Wagner M; Müller B; Kenngott H; Speidel S; Kopp-Schneider A; Maier-Hein K; Maier-Hein L
    Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):925-933. PubMed ID: 29704196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NTL-Unet: A Satellite-Based Approach for Non-Technical Loss Detection in Electricity Distribution Using Sentinel-2 Imagery and Machine Learning.
    Gremes MF; Gomes RC; Heberle AUD; Bergmann MA; Ribeiro LT; Adamski J; Dos Santos FA; Moreira AVR; Lameirão AMMDS; de Toledo RF; de C Filho AO; Andrade CMG; Lima OCDM
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient heterogeneous signcryption for smart grid.
    Jin C; Chen G; Yu C; Shan J; Zhao J; Jin Y
    PLoS One; 2018; 13(12):e0208311. PubMed ID: 30562351
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.