These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31906175)

  • 1. Laves Phase Evolution in China Low-Activation Martensitic (CLAM) Steel during Long-Term Aging at 550 °C.
    Yang L; Zhao F; Ding W
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Long-Term Aging on the Microstructural Evolution in a P91 Steel.
    Zhao H; Wang Z; Han X; Wang M
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Long-Term Thermal Aging on Microstructure Evolution and Creep Deformation Behavior of a Novel 11Cr-3W-3Co Martensite Ferritic Steel.
    Zhao H; Han X; Wang M; Wang Z
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laves Phase in a 12% Cr Martensitic/Ferritic Steel: Evolution and Characterization of Nanoparticles at 650 °C.
    Sanhueza JP; Rojas D; Prat O; Garcia J; Melendrez M
    J Nanosci Nanotechnol; 2019 May; 19(5):2971-2976. PubMed ID: 30501807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation of W-Rich Laves Phase Nanoparticles in Tempered Martensite Ferritic Steel During Long-Term Aging at Elevated Temperature.
    Kim C
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4489-4493. PubMed ID: 31968503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Precipitated Phases during Creep of G115/Sanicro25 Dissimilar Steel Welded Joints.
    Yang M; Zhang Z; Li L
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precipitates and Particles Coarsening of 9Cr-1.7W-0.4Mo-Co Ferritic Heat-Resistant Steel after Isothermal Aging.
    Gao Q; Zhang Y; Zhang H; Li H; Qu F; Han J; Lu C; Wu B; Lu Y; Ma Y
    Sci Rep; 2017 Jul; 7(1):5859. PubMed ID: 28725002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.
    Hsiao ZW; Chen D; Kuo JC; Lin DY
    J Microsc; 2017 Apr; 266(1):35-47. PubMed ID: 28066885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission electron microscopy of precipitation in fine-grained heat-affected zone of Grade91 steel weld during creep exposure.
    Peansukmanee S; Phung-On I; Poopat B; Pearce JTH; Tsuda K; Nusen S; Chairuangsri T
    Micron; 2022 Apr; 155():103216. PubMed ID: 35123162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Laves phase in Crofer 22 H stainless steel.
    Hsiao ZW; Kuhn B; Chen D; Singheiser L; Kuo JC; Lin DY
    Micron; 2015 Jul; 74():59-64. PubMed ID: 25974858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Precipitates Evolution on Low Stress Creep Properties in P92 Heat-resistant Steel.
    Han H; Shen J; Xie J
    Sci Rep; 2018 Oct; 8(1):15411. PubMed ID: 30337691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Interface Structures of M
    Ding Z; Liang B; Xu Z; Dong L
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19235-19242. PubMed ID: 32223209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Up-Scaling of Thermomechanically Induced Laves Phase Precipitation in High Performance Ferritic (HiperFer) Stainless Steels.
    Pöpperlová J; Fan X; Kuhn B; Krupp U
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, size classification and evolution of Laves phase precipitates in high chromium, fully ferritic steels.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2017 Oct; 101():221-231. PubMed ID: 28825996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. M23C6 carbides and Cr2N nitrides in aged duplex stainless steel: A SEM, TEM and FIB tomography investigation.
    Maetz JY; Douillard T; Cazottes S; Verdu C; Kléber X
    Micron; 2016 May; 84():43-53. PubMed ID: 26925831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Precipitate Evolution on Austenite Grain Growth in RAFM Steel.
    Yan B; Liu Y; Wang Z; Liu C; Si Y; Li H; Yu J
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28862680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A first step towards computational design of W-containing self-healing ferritic creep resistant steels.
    Yu H; Xu W; van der Zwaag S
    Sci Technol Adv Mater; 2020 Sep; 21(1):641-652. PubMed ID: 33061837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Laves Precipitation in a FeCrAl-based Alloy Through Severe Thermomechanical Processing.
    Zheng J; Jia Y; Du P; Wang H; Pan Q; Zhang Y; Liu C; Zhang R; Qiu S
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.
    Li H; Song H; Liu W; Xia S; Zhou B; Su C; Ding W
    Ultramicroscopy; 2015 Dec; 159 Pt 2():255-64. PubMed ID: 26142697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant reduction in creep life of P91 steam pipe elbow caused by an aberrant microstructure after short-term service.
    Zhou H; Li J; Liu J; Yu P; Liu X; Fan Z; Hu A; He Y
    Sci Rep; 2024 Mar; 14(1):5216. PubMed ID: 38433232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.