These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31906203)

  • 1. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis.
    Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA
    Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes.
    Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concepts and Misconceptions Concerning the Influence of Divalent Ions on the Performance of Reverse Electrodialysis Using Natural Waters.
    Veerman J
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review.
    Kotoka F; Merino-Garcia I; Velizarov S
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32707798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.
    Rijnaarts T; Huerta E; van Baak W; Nijmeijer K
    Environ Sci Technol; 2017 Nov; 51(21):13028-13035. PubMed ID: 28950057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigating the influence of multivalent ions on power density performance in a single-membrane capacitive reverse electrodialysis cell.
    Wu N; Levant M; Brahmi Y; Tregouet C; Colin A
    Sci Rep; 2024 Jul; 14(1):16984. PubMed ID: 39043868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistance of Ion Exchange Membranes in Aqueous Mixtures of Monovalent and Divalent Ions and the Effect on Reverse Electrodialysis.
    Veerman J; Gómez-Coma L; Ortiz A; Ortiz I
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs.
    Kaya TZ; Altıok E; Güler E; Kabay N
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.
    Guler E; Zhang Y; Saakes M; Nijmeijer K
    ChemSusChem; 2012 Nov; 5(11):2262-70. PubMed ID: 23109486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Modified Pore-Filled Anion-Exchange Membranes for Efficient Energy Harvesting via Reverse Electrodialysis.
    Lee JH; Kim DH; Kang MS
    Membranes (Basel); 2023 Nov; 13(12):. PubMed ID: 38132899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations of Ion Composition and Power Efficiency in a Reverse Electrodialysis Heat Engine.
    Luo F; Wang Y; Sha M; Wei Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31766700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review.
    Tekinalp Ö; Zimmermann P; Holdcroft S; Burheim OS; Deng L
    Membranes (Basel); 2023 May; 13(6):. PubMed ID: 37367770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance.
    Mehdizadeh S; Yasukawa M; Abo T; Kuno M; Noguchi Y; Higa M
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31216734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Poly(Acrylic) Acid-Modified Heterogenous Anion Exchange Membranes with Improved Monovalent Permselectivity for RED.
    Merino-Garcia I; Kotoka F; Portugal CAM; Crespo JG; Velizarov S
    Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32604781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis.
    Villafaña-López L; Reyes-Valadez DM; González-Vargas OA; Suárez-Toriello VA; Jaime-Ferrer JS
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31689967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monovalent selective electrodialysis: Modelling multi-ionic transport across selective membranes.
    Rehman D; Ahdab YD; Lienhard JH
    Water Res; 2021 Jul; 199():117171. PubMed ID: 33989855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Physicochemical Properties of Two Types of Polyepichlorohydrin-Based Anion Exchange Membranes for Reverse Electrodialysis.
    Karakoç E; Güler E
    Membranes (Basel); 2022 Feb; 12(3):. PubMed ID: 35323732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.