These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31906203)

  • 21. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH
    Yao L; Li Q; Pan S; Cheng J; Liu X
    Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems.
    Ju J; Choi Y; Lee S; Park CG; Hwang T; Jung N
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
    Yip NY; Brogioli D; Hamelers HV; Nijmeijer K
    Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membranes for Osmotic Power Generation by Reverse Electrodialysis.
    Rahman MM
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renewable Power Generation by Reverse Electrodialysis Using an Ion Exchange Membrane.
    Chanda S; Tsai PA
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X; Liu S; Crittenden J; Chen Y
    ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion-Exchange Membranes for the Fabrication of Reverse Electrodialysis Device.
    Singh R; Hong SH; Kim D
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reverse electrodialysis (RED) using a bipolar membrane to suppress inorganic fouling around the cathode.
    Han JH; Jeong N; Kim CS; Hwang KS; Kim H; Nam JY; Jwa E; Yang S; Choi J
    Water Res; 2019 Dec; 166():115078. PubMed ID: 31542547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fouling in reverse electrodialysis under natural conditions.
    Vermaas DA; Kunteng D; Saakes M; Nijmeijer K
    Water Res; 2013 Mar; 47(3):1289-98. PubMed ID: 23266386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting.
    Jung J; Choi S; Kang I; Choi K
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack.
    Sugimoto Y; Ujike R; Higa M; Kakihana Y; Higa M
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device to Increase Electrolyte Concentrations to Biomedical Devices.
    Pakkaner E; Orton JL; Campbell CG; Hestekin JA; Hestekin CN
    Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).
    Pawlowski S; Galinha CF; Crespo JG; Velizarov S
    Water Res; 2016 Jan; 88():184-198. PubMed ID: 26497936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting.
    Ma X; Neek-Amal M; Sun C
    ACS Nano; 2024 May; 18(20):12610-12638. PubMed ID: 38733357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic Salinity Power Generation Based on Silk Fibroin Ion-Exchange Membranes.
    Lin Z; Meng Z; Miao H; Wu R; Qiu W; Lin N; Liu XY
    ACS Nano; 2021 Mar; 15(3):5649-5660. PubMed ID: 33660992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upscaling Reverse Electrodialysis.
    Moreno J; Grasman S; van Engelen R; Nijmeijer K
    Environ Sci Technol; 2018 Sep; 52(18):10856-10863. PubMed ID: 30102521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.