These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31906402)

  • 1. Kinetic, Thermodynamic, and Crystallographic Studies of 2-Triazolylthioacetamides as Verona Integron-Encoded Metallo-β-Lactamase 2 (VIM-2) Inhibitor.
    Xiang Y; Zhang YJ; Ge Y; Zhou Y; Chen C; Wahlgren WY; Tan X; Chen X; Yang KW
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31906402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor.
    Christopeit T; Yang KW; Yang SK; Leiros HK
    Acta Crystallogr F Struct Biol Commun; 2016 Nov; 72(Pt 11):813-819. PubMed ID: 27834790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases.
    Muhammad Z; Skagseth S; Boomgaren M; Akhter S; Fröhlich C; Ismael A; Christopeit T; Bayer A; Leiros HS
    Bioorg Med Chem; 2020 Aug; 28(15):115598. PubMed ID: 32631568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors.
    Gavara L; Sevaille L; De Luca F; Mercuri P; Bebrone C; Feller G; Legru A; Cerboni G; Tanfoni S; Baud D; Cutolo G; Bestgen B; Chelini G; Verdirosa F; Sannio F; Pozzi C; Benvenuti M; Kwapien K; Fischer M; Becker K; Frère JM; Mangani S; Gresh N; Berthomieu D; Galleni M; Docquier JD; Hernandez JF
    Eur J Med Chem; 2020 Dec; 208():112720. PubMed ID: 32937203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors.
    Gavara L; Legru A; Verdirosa F; Sevaille L; Nauton L; Corsica G; Mercuri PS; Sannio F; Feller G; Coulon R; De Luca F; Cerboni G; Tanfoni S; Chelini G; Galleni M; Docquier JD; Hernandez JF
    Bioorg Chem; 2021 Aug; 113():105024. PubMed ID: 34116340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases.
    Mojica MF; Mahler SG; Bethel CR; Taracila MA; Kosmopoulou M; Papp-Wallace KM; Llarrull LI; Wilson BM; Marshall SH; Wallace CJ; Villegas MV; Harris ME; Vila AJ; Spencer J; Bonomo RA
    Biochemistry; 2015 May; 54(20):3183-96. PubMed ID: 25915520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halogen-Substituted Triazolethioacetamides as a Potent Skeleton for the Development of Metallo-β-Lactamase Inhibitors.
    Zhang Y; Yan Y; Liang L; Feng J; Wang X; Li L; Yang K
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30934584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors.
    Yan YH; Li W; Chen W; Li C; Zhu KR; Deng J; Dai QQ; Yang LL; Wang Z; Li GB
    Eur J Med Chem; 2022 Jan; 228():113965. PubMed ID: 34763944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases.
    Salimraj R; Hinchliffe P; Kosmopoulou M; Tyrrell JM; Brem J; van Berkel SS; Verma A; Owens RJ; McDonough MA; Walsh TR; Schofield CJ; Spencer J
    FEBS J; 2019 Jan; 286(1):169-183. PubMed ID: 30430727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases.
    Leiros HK; Edvardsen KS; Bjerga GE; Samuelsen Ø
    FEBS J; 2015 Mar; 282(6):1031-42. PubMed ID: 25601024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dithiocarbamate as a Valuable Scaffold for the Inhibition of Metallo-β-Lactmases.
    Ge Y; Xu LW; Liu Y; Sun LY; Gao H; Li JQ; Yang K
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31694268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1).
    Zhai L; Jiang Y; Shi Y; Lv M; Pu YL; Cheng HL; Zhu JY; Yang KW
    Bioorg Chem; 2022 Sep; 126():105910. PubMed ID: 35653899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ((S)-3-Mercapto-2-methylpropanamido)acetic acid derivatives as metallo-β-lactamase inhibitors: Synthesis, kinetic and crystallographic studies.
    Liu S; Jing L; Yu ZJ; Wu C; Zheng Y; Zhang E; Chen Q; Yu Y; Guo L; Wu Y; Li GB
    Eur J Med Chem; 2018 Feb; 145():649-660. PubMed ID: 29353720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles.
    Makena A; Düzgün AÖ; Brem J; McDonough MA; Rydzik AM; Abboud MI; Saral A; Çiçek AÇ; Sandalli C; Schofield CJ
    Antimicrob Agents Chemother; 2015 Dec; 60(3):1377-84. PubMed ID: 26666919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dihydroxyphenyl-substituted thiosemicarbazone: A potent scaffold for the development of metallo-β-lactamases inhibitors and antimicrobial.
    Liu L; Xu YS; Chigan JZ; Zhai L; Ding HH; Wu XR; Chen WY; Yang KW
    Bioorg Chem; 2022 Oct; 127():105928. PubMed ID: 35717802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity.
    Kim Y; Maltseva N; Wilamowski M; Tesar C; Endres M; Joachimiak A
    Protein Sci; 2020 Mar; 29(3):723-743. PubMed ID: 31846104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of hydroxamate as a promising scaffold dually inhibiting metallo- and serine-β-lactamases.
    Wu XR; Chen WY; Liu L; Yang KW
    Eur J Med Chem; 2024 Feb; 265():116055. PubMed ID: 38134748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor.
    Yamaguchi Y; Jin W; Matsunaga K; Ikemizu S; Yamagata Y; Wachino J; Shibata N; Arakawa Y; Kurosaki H
    J Med Chem; 2007 Dec; 50(26):6647-53. PubMed ID: 18052313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7.
    Leiros HK; Skagseth S; Edvardsen KS; Lorentzen MS; Bjerga GE; Leiros I; Samuelsen Ø
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4826-36. PubMed ID: 24913158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases.
    Li JQ; Gao H; Zhai L; Sun LY; Chen C; Chigan JZ; Ding HH; Yang KW
    Bioorg Med Chem; 2021 May; 38():116128. PubMed ID: 33862468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.