These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31906572)

  • 1. High Quality Factor, High Sensitivity Metamaterial Graphene-Perfect Absorber Based on Critical Coupling Theory and Impedance Matching.
    Cen C; Chen Z; Xu D; Jiang L; Chen X; Yi Z; Wu P; Li G; Yi Y
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene ultraviolet ultrahigh-Q perfect absorption for nanoscale optical sensing.
    Yan Z; Zhu Q; Wan M; Lu X; Pu X; Tang C; Yu L
    Opt Express; 2020 Mar; 28(5):6095-6101. PubMed ID: 32225866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Narrow-Band Multi-Resonant Metamaterial in Near-IR.
    Ali F; Aksu S
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene.
    Lai R; Shi P; Yi Z; Li H; Yi Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region.
    Wu D; Li R; Liu Y; Yu Z; Yu L; Chen L; Liu C; Ma R; Ye H
    Nanoscale Res Lett; 2017 Dec; 12(1):427. PubMed ID: 28655219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal.
    Li Z; Yi Z; Liu T; Liu L; Chen X; Zheng F; Zhang J; Li H; Wu P; Yan P
    Phys Chem Chem Phys; 2021 Aug; 23(32):17374-17381. PubMed ID: 34350442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Narrow Dual-Band Monolayer Unpatterned Graphene-Based Perfect Absorber with Critical Coupling in the Near Infrared.
    Wu P; Chen Z; Xu D; Zhang C; Jian R
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing.
    Karthikeyan M; Jayabala P; Ramachandran S; Dhanabalan SS; Sivanesan T; Ponnusamy M
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Light Absorption of Monolayer Graphene by Quasi-Bound State in the Continuum.
    Sang T; Dereshgi SA; Hadibrata W; Tanriover I; Aydin K
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33672919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Band Plasmonic Perfect Absorber Based on Graphene Metamaterials for Refractive Index Sensing Application.
    Yi Z; Liang C; Chen X; Zhou Z; Tang Y; Ye X; Yi Y; Wang J; Wu P
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31269630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Electromagnetically Induced Transparency Effect in Graphene-Dielectric Hybrid Metamaterial and Its High-Performance Sensor Application.
    Gao F; Yuan P; Gao S; Deng J; Sun Z; Jin G; Zeng G; Yan B
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene.
    Chen H; Chen Z; Yang H; Wen L; Yi Z; Zhou Z; Dai B; Zhang J; Wu X; Wu P
    RSC Adv; 2022 Mar; 12(13):7821-7829. PubMed ID: 35424732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipolar charge trapping for absorption enhancement in a graphene-based ultrathin dual-band terahertz biosensor.
    Varshney G; Giri P
    Nanoscale Adv; 2021 Oct; 3(20):5813-5822. PubMed ID: 36132678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bi-functional tunable reflector/high-Q absorber design using VO
    Hayati Raad S; Atlasbaf Z
    Opt Express; 2021 May; 29(11):17510-17521. PubMed ID: 34154292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of refractive index sensing for an infrared plasmonic metamaterial absorber with a nanogap.
    Jung JY; Lee J; Choi JH; Choi DG; Jeong JH
    Opt Express; 2021 Jul; 29(14):22796-22804. PubMed ID: 34266034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance.
    Jiang X; Wang T; Xiao S; Yan X; Cheng L
    Opt Express; 2017 Oct; 25(22):27028-27036. PubMed ID: 29092184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor.
    Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H
    Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber.
    Li H; Wang L; Zhai X
    Sci Rep; 2016 Nov; 6():36651. PubMed ID: 27845350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene perfect absorber based on degenerate critical coupling of toroidal mode.
    Xu R; Fujikata J; Takahara J
    Opt Lett; 2023 Mar; 48(6):1490-1493. PubMed ID: 36946960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.