BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31906601)

  • 21. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion.
    Prentašić P; Lončarić S
    Comput Methods Programs Biomed; 2016 Dec; 137():281-292. PubMed ID: 28110732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks.
    Joonyoung Song ; Boreom Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():681-684. PubMed ID: 29059964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid machine learning architecture for automated detection and grading of retinal images for diabetic retinopathy.
    Narayanan BN; Hardie RC; De Silva MS; Kueterman NK
    J Med Imaging (Bellingham); 2020 May; 7(3):034501. PubMed ID: 32613029
    [No Abstract]   [Full Text] [Related]  

  • 27. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine.
    Saha SK; Fernando B; Cuadros J; Xiao D; Kanagasingam Y
    J Digit Imaging; 2018 Dec; 31(6):869-878. PubMed ID: 29704086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning.
    Karakaya M; Hacisoftaoglu RE
    BMC Bioinformatics; 2020 Jul; 21(Suppl 4):259. PubMed ID: 32631221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A data-driven approach to referable diabetic retinopathy detection.
    Pires R; Avila S; Wainer J; Valle E; Abramoff MD; Rocha A
    Artif Intell Med; 2019 May; 96():93-106. PubMed ID: 31164214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Diabetes through Retinal Images Using Deep Neural Network.
    Ragab M; Al-Ghamdi ASA; Fakieh B; Choudhry H; Mansour RF; Koundal D
    Comput Intell Neurosci; 2022; 2022():7887908. PubMed ID: 35694596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microaneurysm detection in fundus images using a two-step convolutional neural network.
    Eftekhari N; Pourreza HR; Masoudi M; Ghiasi-Shirazi K; Saeedi E
    Biomed Eng Online; 2019 May; 18(1):67. PubMed ID: 31142335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading.
    Zhou K; Gu Z; Liu W; Luo W; Cheng J; Gao S; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2724-2727. PubMed ID: 30440966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a Deep Learning Algorithm for Automatic Diagnosis of Diabetic Retinopathy.
    Raju M; Pagidimarri V; Barreto R; Kadam A; Kasivajjala V; Aswath A
    Stud Health Technol Inform; 2017; 245():559-563. PubMed ID: 29295157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy.
    Mansour RF
    Biomed Eng Lett; 2018 Feb; 8(1):41-57. PubMed ID: 30603189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.
    Abbas Q; Fondon I; Sarmiento A; Jiménez S; Alemany P
    Med Biol Eng Comput; 2017 Nov; 55(11):1959-1974. PubMed ID: 28353133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Explainable Diabetic Retinopathy using EfficientNET
    Chetoui M; Akhloufi MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1966-1969. PubMed ID: 33018388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks.
    Yu C; Xie S; Niu S; Ji Z; Fan W; Yuan S; Liu Q; Chen Q
    Med Phys; 2019 Oct; 46(10):4502-4519. PubMed ID: 31315159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.