These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31906636)

  • 41. On the averaging principle for stochastic differential equations involving Caputo fractional derivative.
    Xiao G; Fečkan M; Wang J
    Chaos; 2022 Oct; 32(10):101105. PubMed ID: 36319308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aging transition in mixed active and inactive fractional-order oscillators.
    Sun Z; Liu Y; Liu K; Yang X; Xu W
    Chaos; 2019 Oct; 29(10):103150. PubMed ID: 31675845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel method to calculate the approximate derivative photoacoustic spectrum using continuous wavelet transform.
    Shao X; Pang C; Su Q
    Fresenius J Anal Chem; 2000 Jul; 367(6):525-9. PubMed ID: 11225825
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experiments on coherence resonance: noisy precursors to Hopf bifurcations.
    Kiss IZ; Hudson JL; Escalera Santos GJ; Parmananda P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035201. PubMed ID: 12689121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stochastic synchronization of genetic oscillator networks.
    Li C; Chen L; Aihara K
    BMC Syst Biol; 2007 Jan; 1():6. PubMed ID: 17408513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel.
    Yusuf A; Qureshi S; Inc M; Aliyu AI; Baleanu D; Shaikh AA
    Chaos; 2018 Dec; 28(12):123121. PubMed ID: 30599538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noise-induced transitions in a double-well oscillator with nonlinear dissipation.
    Semenov VV; Neiman AB; Vadivasova TE; Anishchenko VS
    Phys Rev E; 2016 May; 93(5):052210. PubMed ID: 27300883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy.
    Kumar D; Rai KN
    J Therm Biol; 2017 Jul; 67():49-58. PubMed ID: 28558937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noise-controlled oscillations and their bifurcations in coupled phase oscillators.
    Zaks MA; Neiman AB; Feistel S; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066206. PubMed ID: 14754296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hybrid Monte Carlo algorithm for sampling rare events in space-time histories of stochastic fields.
    Margazoglou G; Biferale L; Grauer R; Jansen K; Mesterházy D; Rosenow T; Tripiccione R
    Phys Rev E; 2019 May; 99(5-1):053303. PubMed ID: 31212557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation.
    Wen SF; Shen YJ; Wang XN; Yang SP; Xing HJ
    Chaos; 2016 Aug; 26(8):084309. PubMed ID: 27586626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control.
    Deressa CT; Duressa GF
    Adv Differ Equ; 2021; 2021(1):174. PubMed ID: 33758591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications.
    Al-Refai M; Hajji MA
    Chaos; 2019 Jan; 29(1):013135. PubMed ID: 30709151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. STOCHASTIC SOLUTIONS FOR FRACTIONAL WAVE EQUATIONS.
    Meerschaert MM; Schilling RL; Sikorskii A
    Nonlinear Dyn; 2015 Jun; 80(4):1685-1695. PubMed ID: 26146456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The conformable fractional grey system model.
    Ma X; Wu W; Zeng B; Wang Y; Wu X
    ISA Trans; 2020 Jan; 96():255-271. PubMed ID: 31331657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.
    Fulger D; Scalas E; Germano G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021122. PubMed ID: 18352002
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods.
    Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D
    Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fractional-Order Chaotic Memory with Wideband Constant Phase Elements.
    Petrzela J
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An image-enhancement method based on variable-order fractional differential operators.
    Xu M; Yang J; Zhao D; Zhao H
    Biomed Mater Eng; 2015; 26 Suppl 1():S1325-33. PubMed ID: 26405893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.