These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 31906647)
1. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments. Kori H; Kiss IZ; Jain S; Hudson JL Chaos; 2018 Apr; 28(4):045111. PubMed ID: 31906647 [TBL] [Abstract][Full Text] [Related]
2. Synchronization of electrochemical oscillators with differential coupling. Wickramasinghe M; Kiss IZ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535 [TBL] [Abstract][Full Text] [Related]
3. Spontaneous symmetry breaking due to the trade-off between attractive and repulsive couplings. Sathiyadevi K; Karthiga S; Chandrasekar VK; Senthilkumar DV; Lakshmanan M Phys Rev E; 2017 Apr; 95(4-1):042301. PubMed ID: 28505842 [TBL] [Abstract][Full Text] [Related]
4. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings. Sato K; Shima S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042922. PubMed ID: 26565319 [TBL] [Abstract][Full Text] [Related]
5. Cluster synchronization in networks of identical oscillators with α-function pulse coupling. Chen B; Engelbrecht JR; Mirollo R Phys Rev E; 2017 Feb; 95(2-1):022207. PubMed ID: 28297946 [TBL] [Abstract][Full Text] [Related]
6. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation. Postnov D; Han SK; Kook H Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2799-807. PubMed ID: 11970085 [TBL] [Abstract][Full Text] [Related]
7. Phase-lag synchronization in networks of coupled chemical oscillators. Totz JF; Snari R; Yengi D; Tinsley MR; Engel H; Showalter K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022819. PubMed ID: 26382466 [TBL] [Abstract][Full Text] [Related]
8. Transcritical riddling in a system of coupled maps. Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735 [TBL] [Abstract][Full Text] [Related]
9. Quasiperiodic, periodic, and slowing-down states of coupled heteroclinic cycles. Li D; Cross MC; Zhou C; Zheng Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016215. PubMed ID: 22400651 [TBL] [Abstract][Full Text] [Related]
10. Corepressive interaction and clustering of degrade-and-fire oscillators. Fernandez B; Tsimring LS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051916. PubMed ID: 22181453 [TBL] [Abstract][Full Text] [Related]
11. Multistable chimera states in a smallest population of three coupled oscillators. Ragavan A; Manoranjani M; Senthilkumar DV; Chandrasekar VK Phys Rev E; 2023 Apr; 107(4-1):044209. PubMed ID: 37198793 [TBL] [Abstract][Full Text] [Related]
13. Phase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling. Wickramasinghe M; Kiss IZ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016210. PubMed ID: 21405763 [TBL] [Abstract][Full Text] [Related]
14. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850 [TBL] [Abstract][Full Text] [Related]
15. Chimeras and complex cluster states in arrays of spin-torque oscillators. Zaks M; Pikovsky A Sci Rep; 2017 Jul; 7(1):4648. PubMed ID: 28680160 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of globally delay-coupled neurons displaying subthreshold oscillations. Masoller C; Torrent MC; García-Ojalvo J Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3255-66. PubMed ID: 19620122 [TBL] [Abstract][Full Text] [Related]
17. Synchronization in populations of electrochemical bursting oscillators with chaotic slow dynamics. Magrini LA; Oliveira Domingues M; Macau EEN; Kiss IZ Chaos; 2021 May; 31(5):053125. PubMed ID: 34240953 [TBL] [Abstract][Full Text] [Related]
18. Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Ashwin P; Borresen J Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026203. PubMed ID: 15447561 [TBL] [Abstract][Full Text] [Related]
19. Clustering in delay-coupled smooth and relaxational chemical oscillators. Blaha K; Lehnert J; Keane A; Dahms T; Hövel P; Schöll E; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062915. PubMed ID: 24483539 [TBL] [Abstract][Full Text] [Related]
20. Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators. Sebek M; Kawamura Y; Nott AM; Kiss IZ Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2160):20190095. PubMed ID: 31656145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]