BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 31906784)

  • 21. Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes.
    Simpson CG; Fuller J; Calixto CP; McNicol J; Booth C; Brown JW; Staiger D
    Methods Mol Biol; 2016; 1398():119-32. PubMed ID: 26867620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The central circadian clock proteins CCA1 and LHY regulate iron homeostasis in Arabidopsis.
    Xu G; Jiang Z; Wang H; Lin R
    J Integr Plant Biol; 2019 Feb; 61(2):168-181. PubMed ID: 29989313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growing at the right time: interconnecting the TOR pathway with photoperiod and circadian regulation.
    Urrea-Castellanos R; Caldana C; Henriques R
    J Exp Bot; 2022 Nov; 73(20):7006-7015. PubMed ID: 35738873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis.
    Song Q; Huang TY; Yu HH; Ando A; Mas P; Ha M; Chen ZJ
    Genome Biol; 2019 Aug; 20(1):170. PubMed ID: 31429787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing.
    Marshall CM; Tartaglio V; Duarte M; Harmon FG
    Plant Cell; 2016 Oct; 28(10):2560-2575. PubMed ID: 27624757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions.
    Shalit-Kaneh A; Kumimoto RW; Filkov V; Harmer SL
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7147-7152. PubMed ID: 29915068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.
    Ruts T; Matsubara S; Wiese-Klinkenberg A; Walter A
    Plant J; 2012 Oct; 72(1):154-61. PubMed ID: 22694320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. JMJD5 Functions in concert with TOC1 in the arabidopsis circadian system.
    Jones MA; Harmer S
    Plant Signal Behav; 2011 Mar; 6(3):445-8. PubMed ID: 21358285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical biology to dissect molecular mechanisms underlying plant circadian clocks.
    Nakamichi N; Yamaguchi J; Sato A; Fujimoto KJ; Ota E
    New Phytol; 2022 Aug; 235(4):1336-1343. PubMed ID: 35661165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emerging design principles in the Arabidopsis circadian clock.
    Carré I; Veflingstad SR
    Semin Cell Dev Biol; 2013 May; 24(5):393-8. PubMed ID: 23597453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana.
    Troncoso-Ponce MA; Mas P
    Mol Plant; 2012 May; 5(3):545-53. PubMed ID: 22230762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary Insight into the Clock-Associated PRR5 Transcriptional Network of Flowering Plants.
    Toda Y; Kudo T; Kinoshita T; Nakamichi N
    Sci Rep; 2019 Feb; 9(1):2983. PubMed ID: 30814643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An overview of natural variation studies in the Arabidopsis thaliana circadian clock.
    Anwer MU; Davis SJ
    Semin Cell Dev Biol; 2013 May; 24(5):422-9. PubMed ID: 23558216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Martin-Tryon EL; Kreps JA; Harmer SL
    Plant Physiol; 2007 Jan; 143(1):473-86. PubMed ID: 17098855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock.
    Li X; Ma D; Lu SX; Hu X; Huang R; Liang T; Xu T; Tobin EM; Liu H
    Plant Cell; 2016 Nov; 28(11):2755-2769. PubMed ID: 27837007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.
    Seo PJ; Mas P
    Plant Cell; 2014 Jan; 26(1):79-87. PubMed ID: 24481076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.
    Shin J; Sánchez-Villarreal A; Davis AM; Du SX; Berendzen KW; Koncz C; Ding Z; Li C; Davis SJ
    Plant Cell Environ; 2017 Jul; 40(7):997-1008. PubMed ID: 28054361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE.
    Kim TS; Kim WY; Fujiwara S; Kim J; Cha JY; Park JH; Lee SY; Somers DE
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16843-8. PubMed ID: 21949396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability.
    Steed G; Ramirez DC; Hannah MA; Webb AAR
    Science; 2021 Apr; 372(6541):. PubMed ID: 33926926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.