BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3190700)

  • 21. Affinity labeling of erythrocyte band 3 protein with pyridoxal 5-phosphate. Involvement of the 35,000-dalton fragment in anion transport.
    Nanri H; Hamasaki N; Minakami S
    J Biol Chem; 1983 May; 258(9):5985-9. PubMed ID: 6853561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NIP- and NAP-taurine bind to external modifier site of AE1 (band 3), at which iodide inhibits anion exchange.
    Knauf PA; Spinelli LJ
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C410-6. PubMed ID: 7653523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of the pyridoxal phosphate binding site at the COOH-terminal region of erythrocyte band 3 protein.
    Kawano Y; Okubo K; Tokunaga F; Miyata T; Iwanaga S; Hamasaki N
    J Biol Chem; 1988 Jun; 263(17):8232-8. PubMed ID: 3372523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of lysine residues in the binding of glyceraldehyde-3-phosphate dehydrogenase to human erythrocyte membranes.
    Eby D; Kirtley ME
    Biochem Biophys Res Commun; 1983 Oct; 116(2):423-7. PubMed ID: 6418159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemichrome binding to band 3: nucleation of Heinz bodies on the erythrocyte membrane.
    Waugh SM; Low PS
    Biochemistry; 1985 Jan; 24(1):34-9. PubMed ID: 3994972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of exofacially reactive lysines on human erythrocyte band 3 using pyridoxal 5'-phosphate.
    Salhany JM
    J Membr Biol; 1991 Apr; 121(1):91-3. PubMed ID: 1904939
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane.
    Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H
    Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of bis(sulfosuccinimidyl) suberate binding in electrophoresis: determination of membrane sidedness of proteins.
    Till O; Schmidt M; Linss W; Baumann E
    Electrophoresis; 2007 Mar; 28(5):740-5. PubMed ID: 17274097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planar lipid bilayers.
    Benz R; Tosteson MT; Schubert D
    Biochim Biophys Acta; 1984 Sep; 775(3):347-55. PubMed ID: 6466677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new covalent peroxidase conjugation method using bis(sulfosuccinimidyl) suberate as cross-linking reagent in a two-step procedure.
    Presentini R
    J Immunoassay Immunochem; 2017; 38(1):100-113. PubMed ID: 27797300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local structural difference between human and bovine band 3 in the anion transport inhibitor-binding region.
    Moriyama R; Tomida M; Hoshino F; Makino S
    Int J Biochem Cell Biol; 1995 Jun; 27(6):575-83. PubMed ID: 7671135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytoskeleton-membrane connections in the human erythrocyte membrane: band 4.1 binds to tetrameric band 3 protein.
    von Rückmann B; Jöns T; Dölle F; Drenckhahn D; Schubert D
    Biochim Biophys Acta; 1997 Apr; 1325(2):226-34. PubMed ID: 9168148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anion exchange protein in Southeast Asian ovalocytes: heterodimer formation between normal and variant subunits.
    Jennings ML; Gosselink PG
    Biochemistry; 1995 Mar; 34(11):3588-95. PubMed ID: 7893655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of anion transport inhibitors on hemolysis of human erythrocytes under hydrostatic pressure.
    Yamaguchi T; Matsumoto M; Kimoto E
    J Biochem; 1995 Oct; 118(4):760-4. PubMed ID: 8576090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal synthesis of band 3 oligomers during terminal maturation of mouse erythroblasts. Dimers and tetramers exist in the membrane as preformed stable species.
    Hanspal M; Golan DE; Smockova Y; Yi SJ; Cho MR; Liu SC; Palek J
    Blood; 1998 Jul; 92(1):329-38. PubMed ID: 9639533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Band 3 protein of the red cell membrane of the llama: crosslinking and cleavage of the cytoplasmic domain.
    Khodadad JK; Weinstein RS
    Biochem Biophys Res Commun; 1985 Jul; 130(1):493-9. PubMed ID: 4026842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Band 3 (AE1, SLC4A1)-mediated transport of stilbenedisulfonates. III: Role of solute and protein structure in proton-activated stilbenedisulfonate influx.
    Salhany JM; Cordes KS; Sloan RL
    Blood Cells Mol Dis; 2006; 37(3):155-63. PubMed ID: 17000125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3-(Trifluoromethyl)-3-(m-isothiocyanophenyl)diazirine: synthesis and chemical characterization of a heterobifunctional carbene-generating crosslinking reagent.
    Dolder M; Michel H; Sigrist H
    J Protein Chem; 1990 Aug; 9(4):407-15. PubMed ID: 2275751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of DTNB to band 3 in the human red cell membrane.
    Toon MR; Dorogi PL; Lukacovic MF; Solomon AK
    Biochim Biophys Acta; 1985 Aug; 818(2):158-70. PubMed ID: 2992587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Band 3 multiprotein complexes in the red cell membrane; of mice and men.
    van den Akker E; Satchwell TJ; Williamson RC; Toye AM
    Blood Cells Mol Dis; 2010 Jun; 45(1):1-8. PubMed ID: 20346715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.