These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 3190715)

  • 1. Structural aspects of skeletal muscle G-actin molecule as studied by proteolytic digestion: effect of nucleotide.
    Hozumi T
    Biochem Int; 1988 Jul; 17(1):171-8. PubMed ID: 3190715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural aspects of skeletal muscle F-actin as studied by tryptic digestion: evidence for a second nucleotide interacting site.
    Hozumi T
    J Biochem; 1988 Aug; 104(2):285-8. PubMed ID: 2972700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A myosin head can interact with two chemically modified G-actin monomers at ATP-modulated multiple sites.
    Arata T
    Biochemistry; 1996 Dec; 35(50):16061-8. PubMed ID: 8973176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of divalent cation on the structure of skeletal muscle G-actin molecule.
    Hozumi T
    Biochem Int; 1988 Jan; 16(1):59-67. PubMed ID: 3355576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrophobicity on skeletal muscle actin molecule modulated by nucleotide binding at a second site.
    Hozumi T
    Biochem Int; 1990; 20(1):45-51. PubMed ID: 2328023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of thiol groups and bound nucleotide in G-actin: thiols as an indicator for the native state of actin.
    Stournaras C
    Anticancer Res; 1990; 10(6):1651-9. PubMed ID: 2285239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions.
    Hiratsuka T
    Biochemistry; 1998 May; 37(20):7167-76. PubMed ID: 9585528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of replacement of the tightly bound Ca2+ by Ba2+ on actin polymerization.
    DalleDonne I; Milzani A; Colombo R
    Arch Biochem Biophys; 1998 Mar; 351(2):141-8. PubMed ID: 9514647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the hydrophobic interactions in the skeletal actomyosin subfragment 1 and its nucleotide complexes by zero-length cross-linking with a nickel-peptide chelate.
    Bertrand R; Derancourt J; Kassab R
    Biochemistry; 1997 Aug; 36(32):9703-14. PubMed ID: 9245402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-headed binding of the unphosphorylated nonmuscle heavy meromyosin.ADP complex to actin.
    Kovács M; Tóth J; Nyitray L; Sellers JR
    Biochemistry; 2004 Apr; 43(14):4219-26. PubMed ID: 15065866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide.
    Shaw MA; Ostap EM; Goldman YE
    Biochemistry; 2003 May; 42(20):6128-35. PubMed ID: 12755615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of Acanthamoeba profilin with actin and nucleotides bound to actin.
    Vinson VK; De La Cruz EM; Higgs HN; Pollard TD
    Biochemistry; 1998 Aug; 37(31):10871-80. PubMed ID: 9692980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Conformational changes of actin induced by strong or weak myosin subfragment-1 binding].
    Dedova IV; Avrova SV; Vikhoreva NN; Vikhorev RG; Hazlett TL; Van der Meer W; Dos Remedios CG; Borovikov IuS
    Tsitologiia; 2004; 46(8):719-34. PubMed ID: 15598019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion.
    Strzelecka-Gołaszewska H; Moraczewska J; Khaitlina SY; Mossakowska M
    Eur J Biochem; 1993 Feb; 211(3):731-42. PubMed ID: 8436131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study of structural changes in muscle fiber contractile proteins using polarization ultraviolet fluorescent microscopy. IV. Several features of the conformational changes in F-actin during muscle fiber relaxation].
    Borovikov IuS; Kirillina VP; Chernogriadskaia NA
    Tsitologiia; 1978 Oct; 20(10):1161-6. PubMed ID: 726060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence study of the high pressure-induced denaturation of skeletal muscle actin.
    Ikeuchi Y; Suzuki A; Oota T; Hagiwara K; Tatsumi R; Ito T; Balny C
    Eur J Biochem; 2002 Jan; 269(1):364-71. PubMed ID: 11784331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reversible conformational transition in muscle actin is caused by nucleotide exchange and uncovers cysteine in position 10.
    Drewes G; Faulstich H
    J Biol Chem; 1991 Mar; 266(9):5508-13. PubMed ID: 2005093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.