BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31907463)

  • 1. Computational methods for single-cell omics across modalities.
    Efremova M; Teichmann SA
    Nat Methods; 2020 Jan; 17(1):14-17. PubMed ID: 31907463
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-cell biology: beyond the sum of its parts.
    Schier AF
    Nat Methods; 2020 Jan; 17(1):17-20. PubMed ID: 31907464
    [No Abstract]   [Full Text] [Related]  

  • 3. Single-cell multimodal omics: the power of many.
    Zhu C; Preissl S; Ren B
    Nat Methods; 2020 Jan; 17(1):11-14. PubMed ID: 31907462
    [No Abstract]   [Full Text] [Related]  

  • 4. Method of the Year 2019: Single-cell multimodal omics.
    Nat Methods; 2020 Jan; 17(1):1. PubMed ID: 31907477
    [No Abstract]   [Full Text] [Related]  

  • 5. Spatially resolved single-cell genomics and transcriptomics by imaging.
    Zhuang X
    Nat Methods; 2021 Jan; 18(1):18-22. PubMed ID: 33408406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating measures of association for single-cell transcriptomics.
    Skinnider MA; Squair JW; Foster LJ
    Nat Methods; 2019 May; 16(5):381-386. PubMed ID: 30962620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell transcriptomic analysis reveals dynamic alternative splicing and gene regulatory networks among pancreatic islets.
    Li Y; Chen J; Xu Q; Han Z; Tan F; Shi T; Chen G
    Sci China Life Sci; 2021 Jan; 64(1):174-176. PubMed ID: 32572807
    [No Abstract]   [Full Text] [Related]  

  • 8. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.
    Specht AT; Li J
    Bioinformatics; 2017 Mar; 33(5):764-766. PubMed ID: 27993778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells.
    Cannoodt R; Saelens W; Deconinck L; Saeys Y
    Nat Commun; 2021 Jun; 12(1):3942. PubMed ID: 34168133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of Biological Networks across Complex Diseases Using Single-Cell Omics.
    Li Y; Ma A; Mathé EA; Li L; Liu B; Ma Q
    Trends Genet; 2020 Dec; 36(12):951-966. PubMed ID: 32868128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mitch: multi-contrast pathway enrichment for multi-omics and single-cell profiling data.
    Kaspi A; Ziemann M
    BMC Genomics; 2020 Jun; 21(1):447. PubMed ID: 32600408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations.
    van den Brink SC; Sage F; Vértesy Á; Spanjaard B; Peterson-Maduro J; Baron CS; Robin C; van Oudenaarden A
    Nat Methods; 2017 Sep; 14(10):935-936. PubMed ID: 28960196
    [No Abstract]   [Full Text] [Related]  

  • 13. Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data.
    Lamere AT; Li J
    Methods Mol Biol; 2019; 1935():141-153. PubMed ID: 30758825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing, visualising and reconstructing network models from single-cell data.
    Woodhouse S; Moignard V; Göttgens B; Fisher J
    Immunol Cell Biol; 2016 Mar; 94(3):256-65. PubMed ID: 26577213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. To the proteome and beyond: advances in single-cell omics profiling for plant systems.
    Clark NM; Elmore JM; Walley JW
    Plant Physiol; 2022 Feb; 188(2):726-737. PubMed ID: 35235661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The secret life of cells.
    Eisenstein M
    Nat Methods; 2020 Jan; 17(1):7-10. PubMed ID: 31907479
    [No Abstract]   [Full Text] [Related]  

  • 17. Mapping gene regulatory networks from single-cell omics data.
    Fiers MWEJ; Minnoye L; Aibar S; Bravo González-Blas C; Kalender Atak Z; Aerts S
    Brief Funct Genomics; 2018 Jul; 17(4):246-254. PubMed ID: 29342231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding development and stem cells using single cell-based analyses of gene expression.
    Kumar P; Tan Y; Cahan P
    Development; 2017 Jan; 144(1):17-32. PubMed ID: 28049689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generalization of t-SNE and UMAP to single-cell multimodal omics.
    Do VH; Canzar S
    Genome Biol; 2021 May; 22(1):130. PubMed ID: 33941244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.