BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31907464)

  • 21. Cell lineage inference from SNP and scRNA-Seq data.
    Ding J; Lin C; Bar-Joseph Z
    Nucleic Acids Res; 2019 Jun; 47(10):e56. PubMed ID: 30820578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks.
    Dondelinger F; Mukherjee S
    Methods Mol Biol; 2019; 1883():25-48. PubMed ID: 30547395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data mining in protein interactomics. Six computational research challenges and opportunities.
    Chen JY; Sivachenko AY
    IEEE Eng Med Biol Mag; 2005; 24(3):95-102. PubMed ID: 15971847
    [No Abstract]   [Full Text] [Related]  

  • 24. Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty.
    Hajiramezanali E; Imani M; Braga-Neto U; Qian X; Dougherty ER
    BMC Genomics; 2019 Jun; 20(Suppl 6):435. PubMed ID: 31189480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lineage Inference and Stem Cell Identity Prediction Using Single-Cell RNA-Sequencing Data.
    Sagar ; GrĂ¼n D
    Methods Mol Biol; 2019; 1975():277-301. PubMed ID: 31062315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of single-cell RNA-seq data into population models to characterize cancer metabolism.
    Damiani C; Maspero D; Di Filippo M; Colombo R; Pescini D; Graudenzi A; Westerhoff HV; Alberghina L; Vanoni M; Mauri G
    PLoS Comput Biol; 2019 Feb; 15(2):e1006733. PubMed ID: 30818329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single cell transcriptomics comes of age.
    Aldridge S; Teichmann SA
    Nat Commun; 2020 Aug; 11(1):4307. PubMed ID: 32855414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. To the proteome and beyond: advances in single-cell omics profiling for plant systems.
    Clark NM; Elmore JM; Walley JW
    Plant Physiol; 2022 Feb; 188(2):726-737. PubMed ID: 35235661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating Cell Fate Decisions with ICGS Analysis of Single Cells.
    Salomonis N
    Methods Mol Biol; 2019; 1975():251-275. PubMed ID: 31062314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unveiling gene regulatory networks during cellular state transitions without linkage across time points.
    Wan R; Zhang Y; Peng Y; Tian F; Gao G; Tang F; Jia J; Ge H
    Sci Rep; 2024 May; 14(1):12355. PubMed ID: 38811747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational approaches for high-throughput single-cell data analysis.
    Todorov H; Saeys Y
    FEBS J; 2019 Apr; 286(8):1451-1467. PubMed ID: 30058136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells.
    Cannoodt R; Saelens W; Deconinck L; Saeys Y
    Nat Commun; 2021 Jun; 12(1):3942. PubMed ID: 34168133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.
    Levitin HM; Yuan J; Sims PA
    Trends Cancer; 2018 Apr; 4(4):264-268. PubMed ID: 29606308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algorithmic issues in reverse engineering of protein and gene networks via the modular response analysis method.
    Berman P; Dasgupta B; Sontag E
    Ann N Y Acad Sci; 2007 Dec; 1115():132-41. PubMed ID: 17925351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable integration of multiomic single-cell data using generative adversarial networks.
    Giansanti V; Giannese F; Botrugno OA; Gandolfi G; Balestrieri C; Antoniotti M; Tonon G; Cittaro D
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38696763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network embedding-based representation learning for single cell RNA-seq data.
    Li X; Chen W; Chen Y; Zhang X; Gu J; Zhang MQ
    Nucleic Acids Res; 2017 Nov; 45(19):e166. PubMed ID: 28977434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network Inference from Single-Cell Transcriptomic Data.
    Todorov H; Cannoodt R; Saelens W; Saeys Y
    Methods Mol Biol; 2019; 1883():235-249. PubMed ID: 30547403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. INSISTC: Incorporating network structure information for single-cell type classification.
    Zheng H; Wang S; Li X; Hu H
    Genomics; 2022 Sep; 114(5):110480. PubMed ID: 36075505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.