These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31907502)

  • 1. Harnessing the active site triad: merging hemilability, proton responsivity, and ligand-based redox-activity.
    Baumgardner DF; Parks WE; Gilbertson JD
    Dalton Trans; 2020 Jan; 49(4):960-965. PubMed ID: 31907502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of hemilability and redox activity in models of hydrogenase active sites.
    Ding S; Ghosh P; Darensbourg MY; Hall MB
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9775-E9782. PubMed ID: 29087322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochim Biophys Acta; 1998 Apr; 1384(1):43-54. PubMed ID: 9602051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemilabile Proton Relays and Redox Activity Lead to {FeNO}
    Cheung PM; Burns KT; Kwon YM; Deshaye MY; Aguayo KJ; Oswald VF; Seda T; Zakharov LN; Kowalczyk T; Gilbertson JD
    J Am Chem Soc; 2018 Dec; 140(49):17040-17050. PubMed ID: 30427681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen reactions of the copper oxidases.
    Whittaker JW
    Essays Biochem; 1999; 34():155-72. PubMed ID: 10730194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural and functional model of galactose oxidase: control of the one-electron oxidized active form through two differentiated phenolic arms in a tripodal ligand.
    Thomas F; Gellon G; Gautier-Luneau I; Saint-Aman E; Pierre JL
    Angew Chem Int Ed Engl; 2002 Aug; 41(16):3047-50. PubMed ID: 12203454
    [No Abstract]   [Full Text] [Related]  

  • 7. Enzymatic desymmetrising redox reactions for the asymmetric synthesis of biaryl atropisomers.
    Staniland S; Yuan B; Giménez-Agulló N; Marcelli T; Willies SC; Grainger DM; Turner NJ; Clayden J
    Chemistry; 2014 Oct; 20(41):13084-8. PubMed ID: 25156181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron O
    Cowley RE; Cirera J; Qayyum MF; Rokhsana D; Hedman B; Hodgson KO; Dooley DM; Solomon EI
    J Am Chem Soc; 2016 Oct; 138(40):13219-13229. PubMed ID: 27626829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The radical chemistry of galactose oxidase.
    Whittaker JW
    Arch Biochem Biophys; 2005 Jan; 433(1):227-39. PubMed ID: 15581579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochemistry; 1996 Nov; 35(45):14425-35. PubMed ID: 8916929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-Depleted Calixarenes as Ligands for Molecular Models of Galactose Oxidase.
    Keck M; Hoof S; Herwig C; Vigalok A; Limberg C
    Chemistry; 2019 Oct; 25(58):13285-13289. PubMed ID: 31441974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galactose oxidase.
    Whittaker JW
    Adv Protein Chem; 2002; 60():1-49. PubMed ID: 12418174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V).
    Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P
    Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies of galactose oxidase.
    Whittaker JW
    Methods Enzymol; 1995; 258():262-77. PubMed ID: 8524155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking an enzyme in look and deed.
    Service RF
    Science; 1998 Jan; 279(5350):479-80. PubMed ID: 9454346
    [No Abstract]   [Full Text] [Related]  

  • 17. The active site of galactose oxidase.
    Whittaker MM; Whittaker JW
    J Biol Chem; 1988 May; 263(13):6074-80. PubMed ID: 2834363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electron transfer to a metalloenzyme redox center coordinated to a monolayer-protected cluster.
    Abad JM; Gass M; Bleloch A; Schiffrin DJ
    J Am Chem Soc; 2009 Jul; 131(29):10229-36. PubMed ID: 19583179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemilabile Amine-Functionalized Efficient Azo-Aromatic Cu-Catalysts Inspired by Galactose Oxidase: Impact of Amine Sidearm on Catalytic Aerobic Oxidation of Alcohols.
    Khatua M; Goswami B; Hans S; Kamal ; Mazumder S; Samanta S
    Inorg Chem; 2022 Nov; 61(44):17777-17789. PubMed ID: 36278950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.