These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 31907505)
1. End-to-end machine learning for experimental physics: using simulated data to train a neural network for object detection in video microscopy. Minor EN; Howard SD; Green AAS; Glaser MA; Park CS; Clark NA Soft Matter; 2020 Feb; 16(7):1751-1759. PubMed ID: 31907505 [TBL] [Abstract][Full Text] [Related]
2. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
3. Simulated HRTEM images of nanoparticles to train a neural network to classify nanoparticles for crystallinity. Gumbiowski N; Barthel J; Loza K; Heggen M; Epple M Nanoscale Adv; 2024 Aug; 6(16):4196-4206. PubMed ID: 39114140 [TBL] [Abstract][Full Text] [Related]
4. Video Salient Object Detection via Fully Convolutional Networks. Wang W; Shen J; Shao L IEEE Trans Image Process; 2018 Jan.; 27(1):38-49. PubMed ID: 28945593 [TBL] [Abstract][Full Text] [Related]
5. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154 [TBL] [Abstract][Full Text] [Related]
6. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images. Khellal A; Ma H; Fei Q Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747439 [TBL] [Abstract][Full Text] [Related]
7. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection. Kim J; Kim J; Jang GJ; Lee M Neural Netw; 2017 Mar; 87():109-121. PubMed ID: 28110106 [TBL] [Abstract][Full Text] [Related]
8. Mimicking non-ideal instrument behavior for hologram processing using neural style translation. Schreck JS; Hayman M; Gantos G; Bansemer A; Gagne DJ Opt Express; 2023 Jun; 31(12):20049-20067. PubMed ID: 37381407 [TBL] [Abstract][Full Text] [Related]
9. Demonstration of Neural Networks to Reconstruct Temperatures from Simulated Fluorescent Data Toward Use in Bio-microfluidics. Kullberg J; Colton J; Gregory CT; Bay A; Munro T Int J Thermophys; 2022 Nov; 43(11):. PubMed ID: 36349060 [TBL] [Abstract][Full Text] [Related]
10. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
11. Automatic flaw detection in sectoral scans using machine learning. Hervé-Côte H; Dupont-Marillia F; Bélanger P Ultrasonics; 2024 Jul; 141():107316. PubMed ID: 38754151 [TBL] [Abstract][Full Text] [Related]
12. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related]
13. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images. Cheng PM; Malhi HS J Digit Imaging; 2017 Apr; 30(2):234-243. PubMed ID: 27896451 [TBL] [Abstract][Full Text] [Related]
14. The effects of physics-based data augmentation on the generalizability of deep neural networks: Demonstration on nodule false-positive reduction. Omigbodun AO; Noo F; McNitt-Gray M; Hsu W; Hsieh SS Med Phys; 2019 Oct; 46(10):4563-4574. PubMed ID: 31396974 [TBL] [Abstract][Full Text] [Related]
15. Topological defect coarsening in quenched smectic-C films analyzed using artificial neural networks. Chowdhury RA; Green AAS; Park CS; Maclennan JE; Clark NA Phys Rev E; 2023 Apr; 107(4-1):044701. PubMed ID: 37198757 [TBL] [Abstract][Full Text] [Related]
16. AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images. Albarqouni S; Baur C; Achilles F; Belagiannis V; Demirci S; Navab N IEEE Trans Med Imaging; 2016 May; 35(5):1313-21. PubMed ID: 26891484 [TBL] [Abstract][Full Text] [Related]
18. MATE: Machine Learning for Adaptive Calibration Template Detection. Donné S; De Vylder J; Goossens B; Philips W Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827920 [TBL] [Abstract][Full Text] [Related]
19. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Wang F; Wang H; Wang H; Li G; Situ G Opt Express; 2019 Sep; 27(18):25560-25572. PubMed ID: 31510427 [TBL] [Abstract][Full Text] [Related]