These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 31907623)

  • 1. Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress.
    Aydinoglu F
    Planta; 2020 Jan; 251(2):38. PubMed ID: 31907623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313.
    Aydinoglu F; Lucas SJ
    Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize miRNAs and their putative target genes involved in chilling stress response in 5-day old seedlings.
    Božić M; Ignjatović Micić D; Delić N; Nikolić A
    BMC Genomics; 2024 May; 25(1):479. PubMed ID: 38750515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots.
    Xu Z; Zhong S; Li X; Li W; Rothstein SJ; Zhang S; Bi Y; Xie C
    PLoS One; 2011; 6(11):e28009. PubMed ID: 22132192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification of known microRNAs in root and leaf of maize by deep sequencing].
    Chen J; Lin HJ; Pan GT; Zhang ZM; Zhang B; Shen YO; Qin C; Zhang Q; Zhao MJ
    Yi Chuan; 2010 Nov; 32(11):1175-86. PubMed ID: 21513170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply.
    Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y
    Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum.
    Wu F; Shu J; Jin W
    PLoS One; 2014; 9(1):e87251. PubMed ID: 24489881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize.
    Nie Z; Ren Z; Wang L; Su S; Wei X; Zhang X; Wu L; Liu D; Tang H; Liu H; Zhang S; Gao S
    Physiol Plant; 2016 Jun; 157(2):161-74. PubMed ID: 26572939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZmMYB31, a R2R3-MYB transcription factor in maize, positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress.
    Li M; Lin L; Zhang Y; Sui N
    Mol Biol Rep; 2019 Aug; 46(4):3937-3944. PubMed ID: 31037550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.).
    Bilska-Kos A; Panek P; Szulc-Głaz A; Ochodzki P; Cisło A; Zebrowski J
    J Plant Physiol; 2018 Sep; 228():178-188. PubMed ID: 29945073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. microRNA-dependent gene regulatory networks in maize leaf senescence.
    Wu X; Ding D; Shi C; Xue Y; Zhang Z; Tang G; Tang J
    BMC Plant Biol; 2016 Mar; 16():73. PubMed ID: 27000050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA transcriptomic analysis of the sixth leaf of maize (Zea mays L.) revealed a regulatory mechanism of jointing stage heterosis.
    Hou G; Dong Y; Zhu F; Zhao Q; Li T; Dou D; Ma X; Wu L; Ku L; Chen Y
    BMC Plant Biol; 2020 Nov; 20(1):541. PubMed ID: 33256592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize.
    Waqas MA; Khan I; Akhter MJ; Noor MA; Ashraf U
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11459-11471. PubMed ID: 28316047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize plants can enter a standby mode to cope with chilling stress.
    Riva-Roveda L; Escale B; Giauffret C; Périlleux C
    BMC Plant Biol; 2016 Oct; 16(1):212. PubMed ID: 27716066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize.
    Han Q; Qi J; Hao G; Zhang C; Wang C; Dirk LMA; Downie AB; Zhao T
    Plant Cell Physiol; 2020 Feb; 61(2):331-341. PubMed ID: 31638155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microRNA528-ZmLac3 module regulates low phosphate tolerance in maize.
    Pei L; Gao X; Tian X; Liu N; Chen M; Fernie AR; Li H
    Plant J; 2024 Jun; 118(6):2233-2248. PubMed ID: 38569011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling.
    Gómez LD; Vanacker H; Buchner P; Noctor G; Foyer CH
    Plant Physiol; 2004 Apr; 134(4):1662-71. PubMed ID: 15047902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings.
    Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y
    J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells.
    Zhang Z; Wei L; Zou X; Tao Y; Liu Z; Zheng Y
    Ann Bot; 2008 Oct; 102(4):509-19. PubMed ID: 18669574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.