These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 31907812)
41. New energy crop giant cane (Arundo donax L.) can substitute traditional energy crops increasing biogas yield and reducing costs. Luca C; Pilu R; Tambone F; Scaglia B; Adani F Bioresour Technol; 2015 Sep; 191():197-204. PubMed ID: 25997008 [TBL] [Abstract][Full Text] [Related]
42. Value-added products from wastewater reduce irrigation needs of Arundo donax energy crop. Cano-Ruiz J; Ruiz Fernández J; Alonso J; Mauri PV; Lobo MC Chemosphere; 2021 Dec; 285():131485. PubMed ID: 34265719 [TBL] [Abstract][Full Text] [Related]
43. Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Elhawat N; Alshaal T; Domokos-Szabolcsy É; El-Ramady H; Márton L; Czakó M; Kátai J; Balogh P; Sztrik A; Molnár M; Popp J; Fári MG Environ Sci Pollut Res Int; 2014 Jun; 21(12):7773-80. PubMed ID: 24638838 [TBL] [Abstract][Full Text] [Related]
44. Single Cell Oil Production from Undetoxified Di Fidio N; Liuzzi F; Mastrolitti S; Albergo R; De Bari I J Microbiol Biotechnol; 2019 Feb; 29(2):256-267. PubMed ID: 30866181 [TBL] [Abstract][Full Text] [Related]
45. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Sarathambal C; Khankhane PJ; Gharde Y; Kumar B; Varun M; Arun S Int J Phytoremediation; 2017 Apr; 19(4):360-370. PubMed ID: 27592507 [TBL] [Abstract][Full Text] [Related]
46. Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil. Saleem MH; Rehman M; Kamran M; Afzal J; Noushahi HA; Liu L Environ Sci Pollut Res Int; 2020 Aug; 27(24):30367-30377. PubMed ID: 32462620 [TBL] [Abstract][Full Text] [Related]
47. Microwave-assisted cascade exploitation of giant reed (Arundo donax L.) to xylose and levulinic acid catalysed by ferric chloride. Di Fidio N; Antonetti C; Raspolli Galletti AM Bioresour Technol; 2019 Dec; 293():122050. PubMed ID: 31454732 [TBL] [Abstract][Full Text] [Related]
48. Effect of Increasing Salinity on Development of Giant Reed (Arundo donax) from Rhizome and Culms. Allinson G Bull Environ Contam Toxicol; 2017 Dec; 99(6):743-747. PubMed ID: 29080112 [TBL] [Abstract][Full Text] [Related]
49. Living mulch enhances soil enzyme activities, nitrogen pools and water retention in giant reed (Arundo donax L.) plantations. Elhawat N; Kovács AB; Antal G; Kurucz E; Domokos-Szabolcsy É; Fári MG; Alshaal T Sci Rep; 2024 Jan; 14(1):1704. PubMed ID: 38242963 [TBL] [Abstract][Full Text] [Related]
50. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
51. Genetic Improvement of Danelli T; Laura M; Savona M; Landoni M; Adani F; Pilu R Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33207586 [No Abstract] [Full Text] [Related]
52. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry? Bonanno G; Cirelli GL; Toscano A; Lo Giudice R; Pavone P Sci Total Environ; 2013 May; 452-453():349-54. PubMed ID: 23534998 [TBL] [Abstract][Full Text] [Related]
53. Exploring the Evolutionary History and Phylogenetic Relationships of Giant Reed ( Luo L; Qu Q; Lin H; Chen J; Lin Z; Shao E; Lin D Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063178 [TBL] [Abstract][Full Text] [Related]
54. Copper toxicity thresholds for important restoration grass species of the Western United States. Paschke MW; Redente EF Environ Toxicol Chem; 2002 Dec; 21(12):2692-7. PubMed ID: 12463566 [TBL] [Abstract][Full Text] [Related]
55. Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu-a hydroponic experiment. Cao Y; Zhang Y; Ma C; Li H; Zhang J; Chen G Environ Sci Pollut Res Int; 2018 Jul; 25(20):19875-19886. PubMed ID: 29737488 [TBL] [Abstract][Full Text] [Related]
56. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Kocoń A; Jurga B Environ Sci Pollut Res Int; 2017 Feb; 24(5):4990-5000. PubMed ID: 27995509 [TBL] [Abstract][Full Text] [Related]
57. Giant reed genotypes from temperate and arid environments show different response mechanisms to drought. Zegada-Lizarazu W; Della Rocca G; Centritto M; Parenti A; Monti A Physiol Plant; 2018 Aug; 163(4):490-501. PubMed ID: 29412466 [TBL] [Abstract][Full Text] [Related]
58. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Saleem MH; Fahad S; Khan SU; Din M; Ullah A; Sabagh AE; Hossain A; Llanes A; Liu L Environ Sci Pollut Res Int; 2020 Feb; 27(5):5211-5221. PubMed ID: 31848948 [TBL] [Abstract][Full Text] [Related]
59. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. Nsanganwimana F; Pourrut B; Mench M; Douay F J Environ Manage; 2014 Oct; 143():123-34. PubMed ID: 24905642 [TBL] [Abstract][Full Text] [Related]
60. Comparison of three ionic liquids pretreatment of Arundo donax L. For enhanced photo-fermentative hydrogen production. Chen Z; Jiang D; Zhang T; Lei T; Zhang H; Yang J; Shui X; Li F; Zhang Y; Zhang Q Bioresour Technol; 2022 Jan; 343():126088. PubMed ID: 34624469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]