These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31908928)

  • 1. State-of-the-art research in robotic hip exoskeletons: A general review.
    Chen B; Zi B; Qin L; Pan Q
    J Orthop Translat; 2020 Jan; 20():4-13. PubMed ID: 31908928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current developments of robotic hip exoskeleton toward sensing, decision, and actuation: A review.
    Yang C; Yu L; Xu L; Yan Z; Hu D; Zhang S; Yang W
    Wearable Technol; 2022; 3():e15. PubMed ID: 38486916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments and challenges of lower extremity exoskeletons.
    Chen B; Ma H; Qin LY; Gao F; Chan KM; Law SW; Qin L; Liao WH
    J Orthop Translat; 2016 Apr; 5():26-37. PubMed ID: 30035072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 7. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies.
    Lora-Millan JS; Moreno JC; Rocon E
    Front Bioeng Biotechnol; 2022; 10():842294. PubMed ID: 35694226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of hybrid exoskeletons to restore gait following spinal cord injury.
    del-Ama AJ; Koutsou AD; Moreno JC; de-los-Reyes A; Gil-Agudo A; Pons JL
    J Rehabil Res Dev; 2012; 49(4):497-514. PubMed ID: 22773254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic lower limb exoskeletons using proportional myoelectric control.
    Ferris DP; Lewis CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2119-24. PubMed ID: 19964579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons.
    Shahid T; Gouwanda D; Nurzaman SG; Gopalai AA
    Biomimetics (Basel); 2018 Jul; 3(3):. PubMed ID: 31105239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic exoskeletons: The current pros and cons.
    Gorgey AS
    World J Orthop; 2018 Sep; 9(9):112-119. PubMed ID: 30254967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Review of Back-Support Exoskeletons and Soft Robotic Suits.
    Ali A; Fontanari V; Schmoelz W; Agrawal SK
    Front Bioeng Biotechnol; 2021; 9():765257. PubMed ID: 34805118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.