These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 3190922)
1. Sodium benzoate inhibits fatty acid oxidation in rat liver: effect on ammonia levels. Kalbag SS; Palekar AG Biochem Med Metab Biol; 1988 Oct; 40(2):133-42. PubMed ID: 3190922 [TBL] [Abstract][Full Text] [Related]
2. Effect of sodium benzoate on cerebral and hepatic energy metabolites in spf mice with congenital hyperammonemia. Ratnakumari L; Qureshi IA; Butterworth RF Biochem Pharmacol; 1993 Jan; 45(1):137-46. PubMed ID: 8424807 [TBL] [Abstract][Full Text] [Related]
3. Effect of acetaldehyde on fatty acid oxidation and ketogenesis by hepatic mitochondria. Cederbaum AI; Lieber CS; Rubin E Arch Biochem Biophys; 1975 Jul; 169(1):29-41. PubMed ID: 1164023 [No Abstract] [Full Text] [Related]
4. Amino acids in the rat liver and plasma and some metabolites in the liver after sodium benzoate treatment. Palekar AG; Kalbag SS Biochem Med Metab Biol; 1991 Aug; 46(1):52-8. PubMed ID: 1931156 [TBL] [Abstract][Full Text] [Related]
5. Free and esterified coenzyme A in the liver and muscles of chronically hyperammonemic mice treated with sodium benzoate. Michalak A; Qureshi IA Biochem Mol Med; 1995 Apr; 54(2):96-104. PubMed ID: 8581365 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of pyruvate carboxylase by sequestration of coenzyme A with sodium benzoate. Griffith AD; Cyr DM; Egan SG; Tremblay GC Arch Biochem Biophys; 1989 Feb; 269(1):201-7. PubMed ID: 2492793 [TBL] [Abstract][Full Text] [Related]
7. Effect of L-carnitine on cerebral and hepatic energy metabolites in congenitally hyperammonemic sparse-fur mice and its role during benzoate therapy. Ratnakumari L; Qureshi IA; Butterworth RF Metabolism; 1993 Aug; 42(8):1039-46. PubMed ID: 8102193 [TBL] [Abstract][Full Text] [Related]
8. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of acetate on palmitate and octanoate oxidation: segregation of acetyl CoA pools. Cederbaum AI; Rubin E Arch Biochem Biophys; 1975 Feb; 166(2):618-28. PubMed ID: 1119812 [No Abstract] [Full Text] [Related]
10. On the mechanism of inhibition of gluconeogenesis and ureagenesis by sodium benzoate. Cyr DM; Egan SG; Brini CM; Tremblay GC Biochem Pharmacol; 1991 Jul; 42(3):645-54. PubMed ID: 1677573 [TBL] [Abstract][Full Text] [Related]
11. Vasoactive intestinal peptide stimulates long-chain fatty acid oxidation and inhibits acetyl-coenzyme A carboxylase activity in isolated rat enterocytes. Vidal H; Beylot M; Comte B; Vega F; Riou JP J Biol Chem; 1989 Mar; 264(9):4901-6. PubMed ID: 2564395 [TBL] [Abstract][Full Text] [Related]
12. Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria. Lopes-Cardozo M; Mulder I; van Vugt F; Hermans PG; van den Bergh SG; Klazinga W; de Vries-Akkerman E Mol Cell Biochem; 1975 Dec; 9(3):155-73. PubMed ID: 1196305 [TBL] [Abstract][Full Text] [Related]
13. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat. Harper RD; Saggerson ED Biochem J; 1975 Dec; 152(3):485-94. PubMed ID: 1227502 [TBL] [Abstract][Full Text] [Related]
14. Agmatine stimulates hepatic fatty acid oxidation: a possible mechanism for up-regulation of ureagenesis. Nissim I; Daikhin Y; Nissim I; Luhovyy B; Horyn O; Wehrli SL; Yudkoff M J Biol Chem; 2006 Mar; 281(13):8486-96. PubMed ID: 16452488 [TBL] [Abstract][Full Text] [Related]
15. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Kerbey AL; Randle PJ; Cooper RH; Whitehouse S; Pask HT; Denton RM Biochem J; 1976 Feb; 154(2):327-48. PubMed ID: 180974 [TBL] [Abstract][Full Text] [Related]
16. Effect of chronic hypoxia on hepatic triacylglycerol concentration and mitochondrial fatty acid oxidizing capacity in liver and heart. Kinnula VL; Hassinen I Acta Physiol Scand; 1978 Jan; 102(1):64-73. PubMed ID: 626089 [TBL] [Abstract][Full Text] [Related]
17. Influence of fatty acids on energy metabolism. 1. Stimulation of oxygen consumption, ketogenesis and CO2 production following addition of octanoate and oleate in perfused rat liver. Scholz R; Schwabe U; Soboll S Eur J Biochem; 1984 May; 141(1):223-30. PubMed ID: 6426957 [TBL] [Abstract][Full Text] [Related]
18. The potentiation of ammonia toxicity by sodium benzoate is prevented by L-carnitine. O'Connor JE; Costell M; GrisolĂa S Biochem Biophys Res Commun; 1987 Jun; 145(2):817-24. PubMed ID: 3593373 [TBL] [Abstract][Full Text] [Related]
19. Acetyl-CoA from inflammation-induced fatty acids oxidation promotes hepatic malate-aspartate shuttle activity and glycolysis. Wang T; Yao W; Li J; He Q; Shao Y; Huang F Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E496-E510. PubMed ID: 29763372 [TBL] [Abstract][Full Text] [Related]
20. Intermediates in fatty acid oxidation. Stewart HB; Tubbs PK; Stanley KK Biochem J; 1973 Jan; 132(1):61-76. PubMed ID: 4722901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]