BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3190926)

  • 1. Growth rate determines activity of porphobilinogen deaminase both in nonmalignant and malignant cell lines.
    Schoenfeld N; Mamet R; Leibovici L; Epstein O; Teitz Y; Atsmon A
    Biochem Med Metab Biol; 1988 Oct; 40(2):213-7. PubMed ID: 3190926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the pyrromethane cofactor of hydroxymethylbilane synthase (porphobilinogen deaminase) is bound through the sulphur atom of a cysteine residue.
    Hart GJ; Miller AD; Battersby AR
    Biochem J; 1988 Jun; 252(3):909-12. PubMed ID: 3421931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that the pyrromethane cofactor of hydroxymethylbilane synthase (porphobilinogen deaminase) is bound to the protein through the sulphur atom of cysteine-242.
    Miller AD; Hart GJ; Packman LC; Battersby AR
    Biochem J; 1988 Sep; 254(3):915-8. PubMed ID: 3196304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides.
    Jordan PM; Berry A
    Biochem J; 1981 Apr; 195(1):177-81. PubMed ID: 6975621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of apo-porphobilinogen deaminase: structural changes induced by cofactor binding.
    Scott AI; Clemens KR; Stolowich NJ; Santander PJ; Gonzalez MD; Roessner CA
    FEBS Lett; 1989 Jan; 242(2):319-24. PubMed ID: 2644132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a cysteine residue as the binding site for the dipyrromethane cofactor at the active site of Escherichia coli porphobilinogen deaminase.
    Jordan PM; Warren MJ; Williams HJ; Stolowich NJ; Roessner CA; Grant SK; Scott AI
    FEBS Lett; 1988 Aug; 235(1-2):189-93. PubMed ID: 3042456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Availability of porphobilinogen controls appearance of porphobilinogen deaminase activity in Escherichia coli K-12.
    Umanoff H; Russell CS; Cosloy SD
    J Bacteriol; 1988 Oct; 170(10):4969-71. PubMed ID: 3049558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of porphobilinogen deaminase from Euglena gracilis and studies of its kinetics.
    Williams DC; Morgan GS; McDonald E; Battersby AR
    Biochem J; 1981 Jan; 193(1):301-10. PubMed ID: 6796041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase.
    Jordan PM; Warren MJ
    FEBS Lett; 1987 Dec; 225(1-2):87-92. PubMed ID: 3079571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protoporphyrinogen oxidase and porphobilinogen deaminase in variegate porphyria.
    Meissner PN; Day RS; Moore MR; Disler PB; Harley E
    Eur J Clin Invest; 1986 Jun; 16(3):257-61. PubMed ID: 3015635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of porphobilinogen oxygenase and porphobilinogen deaminase activities in rat bone marrow under conditions of erythropoietic stress.
    Frydman RB; Tomaro ML; Sburlati A; Gutnisky A
    Biochim Biophys Acta; 1986 Apr; 870(3):520-9. PubMed ID: 3697363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porphobilinogen deaminase is unstable in the absence of its substrate.
    Beaumont C; Grandchamp B; Bogard M; de Verneuil H; Nordmann Y
    Biochim Biophys Acta; 1986 Jul; 882(3):384-8. PubMed ID: 3460638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of uroporphyrinogens from porphobilinogen: mechanism and the nature of the process.
    Frydman B; Frydman RB; Valasinas A; Levy ES; Feinstein G
    Philos Trans R Soc Lond B Biol Sci; 1976 Feb; 273(924):137-60. PubMed ID: 4834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase.
    Warren MJ; Jordan PM
    Biochemistry; 1988 Dec; 27(25):9020-30. PubMed ID: 3069132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heme biosynthetic pathway in the regenerating rat liver. The relation between enzymes of heme synthesis and growth.
    Schoenfeld N; Mamet R; Epstein O; Lahav M; Lurie Y; Atsmon A
    Eur J Biochem; 1987 Aug; 166(3):663-6. PubMed ID: 2886336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of porphobilinogen deaminase from rat liver.
    Mazzetti MB; Tomio JM
    Biochim Biophys Acta; 1988 Nov; 957(1):97-104. PubMed ID: 3179323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of erythrocyte hydroxymethylbilane synthase activity and its application for study of acute intermittent porphyria.
    Lee FY; Hsiao KJ; Tsai YT; Lee SD; Wu SJ; Jeng HS
    Taiwan Yi Xue Hui Za Zhi; 1988 Nov; 87(11):1029-35. PubMed ID: 3235962
    [No Abstract]   [Full Text] [Related]  

  • 18. Labeling of porphobilinogen deaminase by radioactive 5-aminolevulinic acid in isolated developing pea chloroplasts.
    Castelfranco PA; Thayer SS; Wilkinson JQ; Bonner BA
    Arch Biochem Biophys; 1988 Oct; 266(1):219-26. PubMed ID: 3178225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A regulatory role for porphobilinogen deaminase (PBGD) in delta-aminolaevulinic acid (delta-ALA)-induced photosensitization?
    Gibson SL; Cupriks DJ; Havens JJ; Nguyen ML; Hilf R
    Br J Cancer; 1998; 77(2):235-42. PubMed ID: 9460994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of chronic carbamazepine treatment of haem biosynthesis in man and rat.
    McGuire GM; Macphee GJ; Thompson GG; Park BK; Moore MR; Brodie MJ
    Eur J Clin Pharmacol; 1988; 35(3):241-7. PubMed ID: 3181278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.