These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31909302)

  • 1. CFTR Therapeutics Normalize Cerebral Perfusion Deficits in Mouse Models of Heart Failure and Subarachnoid Hemorrhage.
    Lidington D; Fares JC; Uhl FE; Dinh DD; Kroetsch JT; Sauvé M; Malik FA; Matthes F; Vanherle L; Adel A; Momen A; Zhang H; Aschar-Sobbi R; Foltz WD; Wan H; Sumiyoshi M; Macdonald RL; Husain M; Backx PH; Heximer SP; Meissner A; Bolz SS
    JACC Basic Transl Sci; 2019 Dec; 4(8):940-958. PubMed ID: 31909302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian Rhythmicity in Cerebral Microvascular Tone Influences Subarachnoid Hemorrhage-Induced Injury.
    Lidington D; Wan H; Dinh DD; Ng C; Bolz SS
    Stroke; 2022 Jan; 53(1):249-259. PubMed ID: 34905942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage.
    Yagi K; Lidington D; Wan H; Fares JC; Meissner A; Sumiyoshi M; Ai J; Foltz WD; Nedospasov SA; Offermanns S; Nagahiro S; Macdonald RL; Bolz SS
    Stroke; 2015 Aug; 46(8):2260-70. PubMed ID: 26138121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Female mice display sex-specific differences in cerebrovascular function and subarachnoid haemorrhage-induced injury.
    Dinh DD; Wan H; Lidington D; Bolz SS
    EBioMedicine; 2024 Apr; 102():105058. PubMed ID: 38490104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage.
    Lidington D; Kroetsch JT; Bolz SS
    J Cereb Blood Flow Metab; 2018 Jan; 38(1):17-37. PubMed ID: 29135346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic CFTR Correction Normalizes Systemic and Lung-Specific S1P Level Alterations Associated with Heart Failure.
    Uhl FE; Vanherle L; Matthes F; Meissner A
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor necrosis factor-α-mediated downregulation of the cystic fibrosis transmembrane conductance regulator drives pathological sphingosine-1-phosphate signaling in a mouse model of heart failure.
    Meissner A; Yang J; Kroetsch JT; Sauvé M; Dax H; Momen A; Noyan-Ashraf MH; Heximer S; Husain M; Lidington D; Bolz SS
    Circulation; 2012 Jun; 125(22):2739-50. PubMed ID: 22534621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity.
    Malik FA; Meissner A; Semenkov I; Molinski S; Pasyk S; Ahmadi S; Bui HH; Bear CE; Lidington D; Bolz SS
    PLoS One; 2015; 10(6):e0130313. PubMed ID: 26079370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cystic fibrosis transmembrane regulator correction attenuates heart failure-induced lung inflammation.
    Uhl FE; Vanherle L; Meissner A
    Front Immunol; 2022; 13():928300. PubMed ID: 35967318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The TNF-α/sphingosine-1-phosphate signaling axis drives myogenic responsiveness in heart failure.
    Kroetsch JT; Bolz SS
    J Vasc Res; 2013; 50(3):177-85. PubMed ID: 23594703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction.
    Tabeling C; Yu H; Wang L; Ranke H; Goldenberg NM; Zabini D; Noe E; Krauszman A; Gutbier B; Yin J; Schaefer M; Arenz C; Hocke AC; Suttorp N; Proia RL; Witzenrath M; Kuebler WM
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):E1614-23. PubMed ID: 25829545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximal cerebral arteries develop myogenic responsiveness in heart failure via tumor necrosis factor-α-dependent activation of sphingosine-1-phosphate signaling.
    Yang J; Noyan-Ashraf MH; Meissner A; Voigtlaender-Bolz J; Kroetsch JT; Foltz W; Jaffray D; Kapoor A; Momen A; Heximer SP; Zhang H; van Eede M; Henkelman RM; Matthews SG; Lidington D; Husain M; Bolz SS
    Circulation; 2012 Jul; 126(2):196-206. PubMed ID: 22668972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Lumacaftor-Ivacaftor Therapy on Cystic Fibrosis Transmembrane Conductance Regulator Function in Phe508del Homozygous Patients with Cystic Fibrosis.
    Graeber SY; Dopfer C; Naehrlich L; Gyulumyan L; Scheuermann H; Hirtz S; Wege S; Mairbäurl H; Dorda M; Hyde R; Bagheri-Hanson A; Rueckes-Nilges C; Fischer S; Mall MA; Tümmler B
    Am J Respir Crit Care Med; 2018 Jun; 197(11):1433-1442. PubMed ID: 29327948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor.
    Krainer G; Schenkel M; Hartmann A; Ravamehr-Lake D; Deber CM; Schlierf M
    J Biol Chem; 2020 Feb; 295(7):1985-1991. PubMed ID: 31882543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingosine-1-phosphate-dependent activation of p38 MAPK maintains elevated peripheral resistance in heart failure through increased myogenic vasoconstriction.
    Hoefer J; Azam MA; Kroetsch JT; Leong-Poi H; Momen MA; Voigtlaender-Bolz J; Scherer EQ; Meissner A; Bolz SS; Husain M
    Circ Res; 2010 Oct; 107(7):923-33. PubMed ID: 20671234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sphingosine-1-phosphate phosphohydrolase 1 in the regulation of resistance artery tone.
    Peter BF; Lidington D; Harada A; Bolz HJ; Vogel L; Heximer S; Spiegel S; Pohl U; Bolz SS
    Circ Res; 2008 Aug; 103(3):315-24. PubMed ID: 18583713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation.
    Meng X; Wang Y; Wang X; Wrennall JA; Rimington TL; Li H; Cai Z; Ford RC; Sheppard DN
    J Biol Chem; 2017 Mar; 292(9):3706-3719. PubMed ID: 28087700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del).
    Southern KW; Murphy J; Sinha IP; Nevitt SJ
    Cochrane Database Syst Rev; 2020 Dec; 12(12):CD010966. PubMed ID: 33331662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring myocardial infarction-induced long-term memory impairment by targeting the cystic fibrosis transmembrane regulator.
    Vanherle L; Lidington D; Uhl FE; Steiner S; Vassallo S; Skoug C; Duarte JMN; Ramu S; Uller L; Desjardins JF; Connelly KA; Bolz SS; Meissner A
    EBioMedicine; 2022 Dec; 86():104384. PubMed ID: 36462404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial.
    Boyle MP; Bell SC; Konstan MW; McColley SA; Rowe SM; Rietschel E; Huang X; Waltz D; Patel NR; Rodman D;
    Lancet Respir Med; 2014 Jul; 2(7):527-38. PubMed ID: 24973281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.