These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31909404)

  • 1. An optofluidic "tweeze-and-drag" cell stretcher in a microfluidic channel.
    Yao Z; Kwan CC; Poon AW
    Lab Chip; 2020 Feb; 20(3):601-613. PubMed ID: 31909404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R
    Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical guiding-based cell focusing for Raman flow cell cytometer.
    Verma RS; Ahlawat S; Uppal A
    Analyst; 2018 May; 143(11):2648-2655. PubMed ID: 29756139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic organization and transport of cell chain.
    Liu X; Huang J; Li Y; Zhang Y; Li B
    J Biophotonics; 2017 Dec; 10(12):1627-1635. PubMed ID: 28464453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring cell mechanics by optical alignment compression cytometry.
    Roth KB; Eggleton CD; Neeves KB; Marr DW
    Lab Chip; 2013 Apr; 13(8):1571-7. PubMed ID: 23440063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte deformation in high-throughput optical stretchers.
    Sraj I; Szatmary AC; Desai SA; Marr DW; Eggleton CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041923. PubMed ID: 22680514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer.
    Li Z; Yang J; Liu S; Jiang X; Wang H; Hu X; Xue S; He S; Xing X
    Opt Express; 2018 Dec; 26(26):34665-34674. PubMed ID: 30650887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput linear optical stretcher for mechanical characterization of blood cells.
    Roth KB; Neeves KB; Squier J; Marr DW
    Cytometry A; 2016 Apr; 89(4):391-7. PubMed ID: 26565892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique].
    Zhang M; Meng X; Zhu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):848-854. PubMed ID: 33140609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-assisted single-beam optothermal manipulation of microparticles.
    Liu Y; Poon AW
    Opt Express; 2010 Aug; 18(17):18483-91. PubMed ID: 20721243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber.
    Unterkofler S; Garbos MK; Euser TG; St J Russell P
    J Biophotonics; 2013 Sep; 6(9):743-52. PubMed ID: 23281270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Plasmodium falciparum-infected red blood cells by optical stretching.
    Mauritz JM; Tiffert T; Seear R; Lautenschläger F; Esposito A; Lew VL; Guck J; Kaminski CF
    J Biomed Opt; 2010; 15(3):030517. PubMed ID: 20615000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization.
    Mohanty S
    Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple microfluidic dispenser for single-microparticle and cell samples.
    Kasukurti A; Eggleton CD; Desai SA; Disharoon DI; Marr DW
    Lab Chip; 2014 Dec; 14(24):4673-9. PubMed ID: 25316326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OMEF biochip for evaluating red blood cell deformability using dielectrophoresis as a diagnostic tool for type 2 diabetes mellitus.
    Ali DS; Sofela SO; Deliorman M; Sukumar P; Abdulhamid MS; Yakubu S; Rooney C; Garrod R; Menachery A; Hijazi R; Saadi H; Qasaimeh MA
    Lab Chip; 2024 May; 24(11):2906-2919. PubMed ID: 38721867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser.
    Bragheri F; Ferrara L; Bellini N; Vishnubhatla KC; Minzioni P; Ramponi R; Osellame R; Cristiani I
    J Biophotonics; 2010 Apr; 3(4):234-43. PubMed ID: 20301123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle Manipulation by Optical Forces in Microfluidic Devices.
    Paiè P; Zandrini T; Vázquez RM; Osellame R; Bragheri F
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.