These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31909404)

  • 21. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor.
    Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y
    Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level.
    Yang T; Bragheri F; Minzioni P
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Red blood cell rheology using single controlled laser-induced cavitation bubbles.
    Quinto-Su PA; Kuss C; Preiser PR; Ohl CD
    Lab Chip; 2011 Feb; 11(4):672-8. PubMed ID: 21183972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optically driven Archimedes micro-screws for micropump application.
    Lin CL; Vitrant G; Bouriau M; Casalegno R; Baldeck PL
    Opt Express; 2011 Apr; 19(9):8267-76. PubMed ID: 21643076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Migration velocity of red blood cells in microchannels.
    Losserand S; Coupier G; Podgorski T
    Microvasc Res; 2019 Jul; 124():30-36. PubMed ID: 30831125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of red blood cells' dynamic status in a simulated blood circulation system using an ultrahigh-speed simultaneous framing optical electronic camera.
    Zhang Q; Li Z; Zhao S; Wen W; Chang L; Yu H; Jiang T
    Cytometry A; 2017 Feb; 91(2):126-132. PubMed ID: 27517614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher.
    Ekpenyong AE; Posey CL; Chaput JL; Burkart AK; Marquardt MM; Smith TJ; Nichols MG
    Appl Opt; 2009 Nov; 48(32):6344-54. PubMed ID: 19904335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput biophysical measurement of human red blood cells.
    Zheng Y; Shojaei-Baghini E; Azad A; Wang C; Sun Y
    Lab Chip; 2012 Jul; 12(14):2560-7. PubMed ID: 22581052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic-based high-throughput optical trapping of nanoparticles.
    Kotnala A; Zheng Y; Fu J; Cheng W
    Lab Chip; 2017 Jun; 17(12):2125-2134. PubMed ID: 28561826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher.
    Bellini N; Bragheri F; Cristiani I; Guck J; Osellame R; Whyte G
    Biomed Opt Express; 2012 Oct; 3(10):2658-68. PubMed ID: 23082304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optofluidic rotation of living cells for single-cell tomography.
    Kolb T; Albert S; Haug M; Whyte G
    J Biophotonics; 2015 Mar; 8(3):239-46. PubMed ID: 24733809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic sorting of arbitrary cells with dynamic optical tweezers.
    Landenberger B; Höfemann H; Wadle S; Rohrbach A
    Lab Chip; 2012 Sep; 12(17):3177-83. PubMed ID: 22767208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.