These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31909740)

  • 1. Factors influencing estimates of coordinate error for molecular replacement.
    Hatti KS; McCoy AJ; Oeffner RD; Sammito MD; Read RJ
    Acta Crystallogr D Struct Biol; 2020 Jan; 76(Pt 1):19-27. PubMed ID: 31909740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved estimates of coordinate error for molecular replacement.
    Oeffner RD; Bunkóczi G; McCoy AJ; Read RJ
    Acta Crystallogr D Biol Crystallogr; 2013 Nov; 69(Pt 11):2209-15. PubMed ID: 24189232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local error estimates dramatically improve the utility of homology models for solving crystal structures by molecular replacement.
    Bunkóczi G; Wallner B; Read RJ
    Structure; 2015 Feb; 23(2):397-406. PubMed ID: 25619999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the utility of CASP14 models for molecular replacement.
    Millán C; Keegan RM; Pereira J; Sammito MD; Simpkin AJ; McCoy AJ; Lupas AN; Hartmann MD; Rigden DJ; Read RJ
    Proteins; 2021 Dec; 89(12):1752-1769. PubMed ID: 34387010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved technologies now routinely provide protein NMR structures useful for molecular replacement.
    Mao B; Guan R; Montelione GT
    Structure; 2011 Jun; 19(6):757-66. PubMed ID: 21645849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of protein models derived from experiment.
    Laskowski RA; MacArthur MW; Thornton JM
    Curr Opin Struct Biol; 1998 Oct; 8(5):631-9. PubMed ID: 9818269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination.
    Millán C; Sammito MD; McCoy AJ; Nascimento AFZ; Petrillo G; Oeffner RD; Domínguez-Gil T; Hermoso JA; Read RJ; Usón I
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):290-304. PubMed ID: 29652256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of protein cores reveal fundamental differences between solution and crystal structures.
    Mei Z; Treado JD; Grigas AT; Levine ZA; Regan L; O'Hern CS
    Proteins; 2020 Sep; 88(9):1154-1161. PubMed ID: 32105366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic case study on using NMR models for molecular replacement: p53 tetramerization domain revisited.
    Chen YW; Clore GM
    Acta Crystallogr D Biol Crystallogr; 2000 Dec; 56(Pt 12):1535-40. PubMed ID: 11092918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.
    Mao B; Tejero R; Baker D; Montelione GT
    J Am Chem Soc; 2014 Feb; 136(5):1893-906. PubMed ID: 24392845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures.
    Berjanskii M; Zhou J; Liang Y; Lin G; Wishart DS
    J Biomol NMR; 2012 Jul; 53(3):167-80. PubMed ID: 22678091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The X-ray structure of a recombinant major urinary protein at 1.75 A resolution. A comparative study of X-ray and NMR-derived structures.
    Kuser PR; Franzoni L; Ferrari E; Spisni A; Polikarpov I
    Acta Crystallogr D Biol Crystallogr; 2001 Dec; 57(Pt 12):1863-9. PubMed ID: 11717500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray vs. NMR structures as templates for computational protein design.
    Schneider M; Fu X; Keating AE
    Proteins; 2009 Oct; 77(1):97-110. PubMed ID: 19422060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study.
    Ramelot TA; Raman S; Kuzin AP; Xiao R; Ma LC; Acton TB; Hunt JF; Montelione GT; Baker D; Kennedy MA
    Proteins; 2009 Apr; 75(1):147-67. PubMed ID: 18816799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of comparative modeling in CASP2.
    Martin AC; MacArthur MW; Thornton JM
    Proteins; 1997; Suppl 1():14-28. PubMed ID: 9485491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the application of the expected log-likelihood gain to decision making in molecular replacement.
    Oeffner RD; Afonine PV; Millán C; Sammito M; Usón I; Read RJ; McCoy AJ
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):245-255. PubMed ID: 29652252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Likelihood-based estimation of substructure content from single-wavelength anomalous diffraction (SAD) intensity data.
    Hatti KS; McCoy AJ; Read RJ
    Acta Crystallogr D Struct Biol; 2021 Jul; 77(Pt 7):880-893. PubMed ID: 34196615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly.
    Feng W; Pan L; Zhang M
    Sci China Life Sci; 2011 Feb; 54(2):101-11. PubMed ID: 21318479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy.
    Brünger AT; Nilges M
    Q Rev Biophys; 1993 Feb; 26(1):49-125. PubMed ID: 8210313
    [No Abstract]   [Full Text] [Related]  

  • 20. Solution structure of an isolated antibody VL domain.
    Constantine KL; Friedrichs MS; Metzler WJ; Wittekind M; Hensley P; Mueller L
    J Mol Biol; 1994 Feb; 236(1):310-27. PubMed ID: 8107112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.