These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2310 related articles for article (PubMed ID: 31909967)
1. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
2. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Olate-Moya F; Rubí-Sans G; Engel E; Mateos-Timoneda MÁ; Palza H Biomacromolecules; 2024 Jun; 25(6):3312-3324. PubMed ID: 38728671 [TBL] [Abstract][Full Text] [Related]
3. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Choe G; Oh S; Seok JM; Park SA; Lee JY Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460 [TBL] [Abstract][Full Text] [Related]
4. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
5. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
6. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313 [TBL] [Abstract][Full Text] [Related]
7. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282 [TBL] [Abstract][Full Text] [Related]
8. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564 [TBL] [Abstract][Full Text] [Related]
9. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004 [TBL] [Abstract][Full Text] [Related]
11. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
12. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
13. Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Zhou M; Lozano N; Wychowaniec JK; Hodgkinson T; Richardson SM; Kostarelos K; Hoyland JA Acta Biomater; 2019 Sep; 96():271-280. PubMed ID: 31325577 [TBL] [Abstract][Full Text] [Related]
14. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
15. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034 [TBL] [Abstract][Full Text] [Related]
16. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
17. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297 [TBL] [Abstract][Full Text] [Related]
18. Alginate/Gelatin-Based Hydrogel with Soy Protein/Peptide Powder for 3D Printing Tissue-Engineering Scaffolds to Promote Angiogenesis. Liu Y; Hu Q; Dong W; Liu S; Zhang H; Gu Y Macromol Biosci; 2022 Apr; 22(4):e2100413. PubMed ID: 35043585 [TBL] [Abstract][Full Text] [Related]
19. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
20. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]