These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 31910046)

  • 1. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins.
    Esparza-Moltó PB; Cuezva JM
    Antioxid Redox Signal; 2020 Nov; 33(13):927-945. PubMed ID: 31910046
    [No Abstract]   [Full Text] [Related]  

  • 2. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival.
    García-Bermúdez J; Cuezva JM
    Biochim Biophys Acta; 2016 Aug; 1857(8):1167-1182. PubMed ID: 26876430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
    Gentric G; Mieulet V; Mechta-Grigoriou F
    Antioxid Redox Signal; 2017 Mar; 26(9):462-485. PubMed ID: 27228792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
    Li X; Han G; Li X; Kan Q; Fan Z; Li Y; Ji Y; Zhao J; Zhang M; Grigalavicius M; Berge V; Goscinski MA; Nesland JM; Suo Z
    Oncotarget; 2017 Jul; 8(28):46363-46380. PubMed ID: 28624784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors.
    Sánchez-Aragó M; Formentini L; Cuezva JM
    Antioxid Redox Signal; 2013 Jul; 19(3):285-98. PubMed ID: 22901241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic reprogramming and disease progression in cancer patients.
    Torresano L; Nuevo-Tapioles C; Santacatterina F; Cuezva JM
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165721. PubMed ID: 32057942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial Transfer in Cancer: A Comprehensive Review.
    Zampieri LX; Silva-Almeida C; Rondeau JD; Sonveaux P
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Multifaceted ATPase Inhibitory Factor 1 (IF1) in Energy Metabolism Reprogramming and Mitochondrial Dysfunction: A New Player in Age-Associated Disorders?
    Gore E; Duparc T; Genoux A; Perret B; Najib S; Martinez LO
    Antioxid Redox Signal; 2022 Aug; 37(4-6):370-393. PubMed ID: 34605675
    [No Abstract]   [Full Text] [Related]  

  • 9. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives.
    Zhao L; Tang M; Bode AM; Liao W; Cao Y
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188485. PubMed ID: 33309965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype.
    Sánchez-Cenizo L; Formentini L; Aldea M; Ortega AD; García-Huerta P; Sánchez-Aragó M; Cuezva JM
    J Biol Chem; 2010 Aug; 285(33):25308-13. PubMed ID: 20538613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain.
    Garcia-Heredia JM; Carnero A
    Oncotarget; 2015 Dec; 6(39):41582-99. PubMed ID: 26462158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis.
    Baughman JM; Nilsson R; Gohil VM; Arlow DH; Gauhar Z; Mootha VK
    PLoS Genet; 2009 Aug; 5(8):e1000590. PubMed ID: 19680543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria: The metabolic switch of cellular oncogenic transformation.
    Tan YQ; Zhang X; Zhang S; Zhu T; Garg M; Lobie PE; Pandey V
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188534. PubMed ID: 33794332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromanaging aerobic respiration and glycolysis in cancer cells.
    Orang AV; Petersen J; McKinnon RA; Michael MZ
    Mol Metab; 2019 May; 23():98-126. PubMed ID: 30837197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours.
    Missiroli S; Perrone M; Genovese I; Pinton P; Giorgi C
    EBioMedicine; 2020 Sep; 59():102943. PubMed ID: 32818805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose avidity of carcinomas.
    Ortega AD; Sánchez-Aragó M; Giner-Sánchez D; Sánchez-Cenizo L; Willers I; Cuezva JM
    Cancer Lett; 2009 Apr; 276(2):125-35. PubMed ID: 18790562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer.
    Willers IM; Cuezva JM
    Biochim Biophys Acta; 2011 Jun; 1807(6):543-51. PubMed ID: 21035425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.