These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 31910098)
1. Type II Photoinitiator and Tuneable Poly(Ethylene Glycol)-Based Materials Library for Visible Light Photolithography. Yang X; Mohseni M; Bas O; Meinert C; New EJ; Castro NJ Tissue Eng Part A; 2020 Mar; 26(5-6):292-304. PubMed ID: 31910098 [TBL] [Abstract][Full Text] [Related]
2. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Arcaute K; Mann B; Wicker R Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602 [TBL] [Abstract][Full Text] [Related]
3. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Cheng YL; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():66-73. PubMed ID: 28888018 [TBL] [Abstract][Full Text] [Related]
5. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Arcaute K; Mann BK; Wicker RB Ann Biomed Eng; 2006 Sep; 34(9):1429-41. PubMed ID: 16897421 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Off-the-Shelf Multilumen Poly(Ethylene Glycol) Nerve Guidance Conduits Using Stereolithography. Arcaute K; Mann BK; Wicker RB Tissue Eng Part C Methods; 2011 Jan; 17(1):27-38. PubMed ID: 20673135 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization. Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
9. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs. Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105 [TBL] [Abstract][Full Text] [Related]
10. Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering. Correia TR; Ferreira P; Vaz R; Alves P; Figueiredo MM; Correia IJ; Coimbra P Int J Biol Macromol; 2016 Dec; 93(Pt B):1539-1548. PubMed ID: 27185071 [TBL] [Abstract][Full Text] [Related]
11. Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions. Zheng YC; Zhao YY; Zheng ML; Chen SL; Liu J; Jin F; Dong XZ; Zhao ZS; Duan XM ACS Appl Mater Interfaces; 2019 Jan; 11(2):1782-1789. PubMed ID: 30608644 [TBL] [Abstract][Full Text] [Related]
12. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Lin H; Zhang D; Alexander PG; Yang G; Tan J; Cheng AW; Tuan RS Biomaterials; 2013 Jan; 34(2):331-9. PubMed ID: 23092861 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Ovsianikov A; Malinauskas M; Schlie S; Chichkov B; Gittard S; Narayan R; Löbler M; Sternberg K; Schmitz KP; Haverich A Acta Biomater; 2011 Mar; 7(3):967-74. PubMed ID: 20977947 [TBL] [Abstract][Full Text] [Related]
14. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture. Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007 [TBL] [Abstract][Full Text] [Related]
15. Design of photocurable, biodegradable scaffolds for liver lobule regeneration via digital light process-additive manufacturing. Teng CL; Chen JY; Chang TL; Hsiao SK; Hsieh YK; Villalobos Gorday K; Cheng YL; Wang J Biofabrication; 2020 Jun; 12(3):035024. PubMed ID: 31918413 [TBL] [Abstract][Full Text] [Related]
16. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508 [TBL] [Abstract][Full Text] [Related]
18. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Shanjani Y; Pan CC; Elomaa L; Yang Y Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102 [TBL] [Abstract][Full Text] [Related]
19. A Tuneable, Photocurable, Poly(Caprolactone)-Based Resin for Tissue Engineering-Synthesis, Characterisation and Use in Stereolithography. Field J; Haycock JW; Boissonade FM; Claeyssens F Molecules; 2021 Feb; 26(5):. PubMed ID: 33668087 [TBL] [Abstract][Full Text] [Related]
20. Ionic Carbazole-Based Water-Soluble Two-Photon Photoinitiator and the Fabrication of Biocompatible 3D Hydrogel Scaffold. Gao W; Chao H; Zheng YC; Zhang WC; Liu J; Jin F; Dong XZ; Liu YH; Li SJ; Zheng ML ACS Appl Mater Interfaces; 2021 Jun; 13(24):27796-27805. PubMed ID: 34102846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]