BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31910887)

  • 1. DNA methylation and expression analyses reveal epialleles for the foliar disease resistance genes in peanut (Arachis hypogaea L.).
    Bhat RS; Rockey J; Shirasawa K; Tilak IS; Brijesh Patil MP; Reddy Lachagari VB
    BMC Res Notes; 2020 Jan; 13(1):20. PubMed ID: 31910887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Methylome and gene expression analysis during early Peanut pod development.
    Wang P; Shi S; Ma J; Song H; Zhang Y; Gao C; Zhao C; Zhao S; Hou L; Lopez-Baltazar J; Fan S; Xia H; Wang X
    BMC Plant Biol; 2018 Dec; 18(1):352. PubMed ID: 30545288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum.
    Chen Y; Ren X; Zhou X; Huang L; Yan L; Lei Y; Liao B; Huang J; Huang S; Wei W; Jiang H
    BMC Genomics; 2014 Dec; 15(1):1078. PubMed ID: 25481772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introgression of peanut smut resistance from landraces to elite peanut cultivars (Arachis hypogaea L.).
    Bressano M; Massa AN; Arias RS; de Blas F; Oddino C; Faustinelli PC; Soave S; Soave JH; Pérez MA; Sobolev VS; Lamb MC; Balzarini M; Buteler MI; Seijo JG
    PLoS One; 2019; 14(2):e0211920. PubMed ID: 30735547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of differentially expressed R-gene candidates with leaf spot resistance in peanut (Arachis hypogaea L.).
    Dang PM; Lamb MC; Chen CY
    Mol Biol Rep; 2021 Jan; 48(1):323-334. PubMed ID: 33403558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome sequencing and expression analysis in peanut reveal the potential mechanism response to Ralstonia solanacearum infection.
    Wang X; Qi F; Sun Z; Liu H; Wu Y; Wu X; Xu J; Liu H; Qin L; Wang Z; Sang S; Dong W; Huang B; Zheng Z; Zhang X
    BMC Plant Biol; 2024 Mar; 24(1):207. PubMed ID: 38515036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.).
    Hake AA; Shirasawa K; Yadawad A; Sukruth M; Patil M; Nayak SN; Lingaraju S; Patil PV; Nadaf HL; Gowda MVC; Bhat RS
    PLoS One; 2017; 12(10):e0186113. PubMed ID: 29040293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut (
    Cui Y; Bian J; Guan Y; Xu F; Han X; Deng X; Liu X
    Front Plant Sci; 2022; 13():828482. PubMed ID: 35371146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.).
    Gayathri M; Shirasawa K; Varshney RK; Pandey MK; Bhat RS
    BMC Res Notes; 2018 Jan; 11(1):10. PubMed ID: 29310707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels.
    Jogi A; Kerry JW; Brenneman TB; Leebens-Mack JH; Gold SE
    Microbiol Res; 2016 Mar; 184():1-12. PubMed ID: 26856448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Differential expression of genes related to bacterial wilt resistance in peanut (Arachis hypogaea L.)].
    Peng WF; Lv JW; Ren XP; Huang L; Zhao XY; Wen QG; Jiang HF
    Yi Chuan; 2011 Apr; 33(4):389-96. PubMed ID: 21482530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.).
    Lu Q; Liu H; Hong Y; Li H; Liu H; Li X; Wen S; Zhou G; Li S; Chen X; Liang X
    BMC Genomics; 2018 Dec; 19(1):887. PubMed ID: 30526476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes.
    da Silva MF; Gonçalves MC; Brito MDS; Medeiros CN; Harakava R; Landell MGA; Pinto LR
    PLoS One; 2020; 15(11):e0241493. PubMed ID: 33166323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes.
    Bosamia TC; Dodia SM; Mishra GP; Ahmad S; Joshi B; Thirumalaisamy PP; Kumar N; Rathnakumar AL; Sangh C; Kumar A; Thankappan R
    PLoS One; 2020; 15(8):e0236823. PubMed ID: 32745143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A SCAR marker for resistance to Aspergillus flavus in peanut (Arachis hypogaea L.)].
    Lei Y; Liao BS; Wang SY; Zhang YB; Li D; Jiang HF
    Yi Chuan; 2006 Sep; 28(9):1107-11. PubMed ID: 16963420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analyses reveal the expression and regulation of genes associated with resistance to early leaf spot in peanut.
    Gong L; Han S; Yuan M; Ma X; Hagan A; He G
    BMC Res Notes; 2020 Aug; 13(1):381. PubMed ID: 32782019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.).
    Luo H; Pandey MK; Khan AW; Wu B; Guo J; Ren X; Zhou X; Chen Y; Chen W; Huang L; Liu N; Lei Y; Liao B; Varshney RK; Jiang H
    Plant Biotechnol J; 2019 Dec; 17(12):2356-2369. PubMed ID: 31087470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication.
    Zhuang W; Chen H; Yang M; Wang J; Pandey MK; Zhang C; Chang WC; Zhang L; Zhang X; Tang R; Garg V; Wang X; Tang H; Chow CN; Wang J; Deng Y; Wang D; Khan AW; Yang Q; Cai T; Bajaj P; Wu K; Guo B; Zhang X; Li J; Liang F; Hu J; Liao B; Liu S; Chitikineni A; Yan H; Zheng Y; Shan S; Liu Q; Xie D; Wang Z; Khan SA; Ali N; Zhao C; Li X; Luo Z; Zhang S; Zhuang R; Peng Z; Wang S; Mamadou G; Zhuang Y; Zhao Z; Yu W; Xiong F; Quan W; Yuan M; Li Y; Zou H; Xia H; Zha L; Fan J; Yu J; Xie W; Yuan J; Chen K; Zhao S; Chu W; Chen Y; Sun P; Meng F; Zhuo T; Zhao Y; Li C; He G; Zhao Y; Wang C; Kavikishor PB; Pan RL; Paterson AH; Wang X; Ming R; Varshney RK
    Nat Genet; 2019 May; 51(5):865-876. PubMed ID: 31043757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences.
    Peng Z; Fan W; Wang L; Paudel D; Leventini D; Tillman BL; Wang J
    Mol Genet Genomics; 2017 Oct; 292(5):955-965. PubMed ID: 28492983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential gene expression in leaf tissues between mutant and wild-type genotypes response to late leaf spot in peanut (Arachis hypogaea L.).
    Han S; Liu H; Yan M; Qi F; Wang Y; Sun Z; Huang B; Dong W; Tang F; Zhang X; He G
    PLoS One; 2017; 12(8):e0183428. PubMed ID: 28841668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.