These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 31910955)
41. Selective and high-sensitive label-free detection of ascorbic acid by carbon nitride quantum dots with intense fluorescence from lone pair states. Xie H; Fu Y; Zhang Q; Yan K; Yang R; Mao K; Chu PK; Liu L; Wu X Talanta; 2019 May; 196():530-536. PubMed ID: 30683401 [TBL] [Abstract][Full Text] [Related]
42. The Sensitive Turn-On Fluorescence Detection of Ascorbic Acid Based on Iron(III)-Modulated Nitrogen-Doped Graphene Quantum Dots. Kong X; Gong Y; Fan Z J Fluoresc; 2016 Sep; 26(5):1755-62. PubMed ID: 27357393 [TBL] [Abstract][Full Text] [Related]
43. Aggregation-induced fluorescence of the luminol-terbium(III) complex in polymer nanoparticles for sensitive determination of thrombin. Tong YJ; Song AM; Yu LD; Liang RP; Qiu JD Mikrochim Acta; 2019 Dec; 187(1):53. PubMed ID: 31848726 [TBL] [Abstract][Full Text] [Related]
44. A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Liu J; Wang L; Bao H Anal Bioanal Chem; 2019 Feb; 411(4):877-883. PubMed ID: 30483855 [TBL] [Abstract][Full Text] [Related]
45. On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO Chen K; Qing W; Hu W; Lu M; Wang Y; Liu X Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():228-234. PubMed ID: 30695741 [TBL] [Abstract][Full Text] [Related]
46. DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Malashikhina N; Pavlov V Biosens Bioelectron; 2012 Mar; 33(1):241-6. PubMed ID: 22317836 [TBL] [Abstract][Full Text] [Related]
47. Biological Functionalization of Conjugated Polymer Nanoparticles for Targeted Imaging and Photodynamic Killing of Tumor Cells. Feng L; Zhu J; Wang Z ACS Appl Mater Interfaces; 2016 Aug; 8(30):19364-70. PubMed ID: 27406913 [TBL] [Abstract][Full Text] [Related]
48. Fe(3+)-functionalized carbon quantum dots: A facile preparation strategy and detection for ascorbic acid in rat brain microdialysates. Li L; Wang C; Luo J; Guo Q; Liu K; Liu K; Zhao W; Lin Y Talanta; 2015 Nov; 144():1301-7. PubMed ID: 26452962 [TBL] [Abstract][Full Text] [Related]
49. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging. Du F; Gong X; Lu W; Liu Y; Gao Y; Shuang S; Xian M; Dong C Talanta; 2018 Mar; 179():554-562. PubMed ID: 29310274 [TBL] [Abstract][Full Text] [Related]
50. A New Indirect Spectrofluorimetric Method for Determination of Ascorbic Acid with 2,4,6-Tripyridyl-S-Triazine in Pharmaceutical Samples. Klepo L; Copra-Janicijevic A; Kukoc-Modun L Molecules; 2016 Jan; 21(1):E101. PubMed ID: 26797594 [TBL] [Abstract][Full Text] [Related]
51. A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters. Liu S; Pang S Mikrochim Acta; 2018 Aug; 185(9):426. PubMed ID: 30136157 [TBL] [Abstract][Full Text] [Related]
52. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Mo Q; Liu F; Gao J; Zhao M; Shao N Anal Chim Acta; 2018 Mar; 1003():49-55. PubMed ID: 29317029 [TBL] [Abstract][Full Text] [Related]
54. Colorimetric sensing for ascorbic acid based on peroxidase-like of GoldMag nanocomposites. Guan H; Han B; Gong D; Song Y; Liu B; Zhang N Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117277. PubMed ID: 31229917 [TBL] [Abstract][Full Text] [Related]
55. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Ezhil Vilian AT; Rajkumar M; Chen SM Colloids Surf B Biointerfaces; 2014 Mar; 115():295-301. PubMed ID: 24384145 [TBL] [Abstract][Full Text] [Related]
56. Chemiluminescence of Conjugated-Polymer Nanoparticles by Direct Oxidation with Hypochlorite. Zhu B; Tang W; Ren Y; Duan X Anal Chem; 2018 Nov; 90(22):13714-13722. PubMed ID: 30354067 [TBL] [Abstract][Full Text] [Related]
57. A label-free nano-probe for sequential and quantitative determination of Cr(VI) and ascorbic acid in real samples based on S and N dual-doped carbon dots. Song S; Liang F; Li M; Du F; Dong W; Gong X; Shuang S; Dong C Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():58-68. PubMed ID: 30822735 [TBL] [Abstract][Full Text] [Related]
58. Multi-walled carbon nanotube/poly(glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals. Thomas T; Mascarenhas RJ; Swamy BE; Martis P; Mekhalif Z; Sherigara BS Colloids Surf B Biointerfaces; 2013 Oct; 110():458-65. PubMed ID: 23770784 [TBL] [Abstract][Full Text] [Related]
59. Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid. Zhang X; Yu S; He W; Uyama H; Xie Q; Zhang L; Yang F Biosens Bioelectron; 2014 May; 55():446-51. PubMed ID: 24441542 [TBL] [Abstract][Full Text] [Related]
60. Paper surface modification strategies employing N-SBA-15/polymer composites in bioanalytical sensor design. Moreira CM; Scala-Benuzzi ML; Takara EA; Pereira SV; Regiart M; Soler-Illia GJAA; Raba J; Messina GA Talanta; 2019 Aug; 200():186-192. PubMed ID: 31036172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]