BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31910963)

  • 1. Target-mediated surface chemistry of gold nanorods for breaking the low color resolution limitation of monocolorimetric sensor.
    Wang H; Rao H; Xue X; An P; Gao M; Luo M; Liu X; Xue Z
    Anal Chim Acta; 2020 Feb; 1097():222-229. PubMed ID: 31910963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone colorimetric assay of acid phosphatase based on a controlled iodine-mediated etching of gold nanorods.
    Liu BW; Huang PC; Wu FY
    Anal Bioanal Chem; 2020 Nov; 412(29):8051-8059. PubMed ID: 33001243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide.
    Fu X; Chen L; Li J; Lin M; You H; Wang W
    Biosens Bioelectron; 2012 Apr; 34(1):227-31. PubMed ID: 22387039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen.
    Liu JM; Jiao L; Lin LP; Cui ML; Wang XX; Zhang LH; Zheng ZY; Jiang SL
    Talanta; 2013 Dec; 117():425-30. PubMed ID: 24209363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-suppressed I
    Qing Z; Li Y; Li Y; Luo G; Hu J; Zou Z; Lei Y; Liu J; Yang R
    Mikrochim Acta; 2020 Aug; 187(9):497. PubMed ID: 32803418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iodine-Mediated Etching of Gold Nanorods for Plasmonic ELISA Based on Colorimetric Detection of Alkaline Phosphatase.
    Zhang Z; Chen Z; Wang S; Cheng F; Chen L
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27639-45. PubMed ID: 26619266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.
    Zhou Q; Lin Y; Xu M; Gao Z; Yang H; Tang D
    Anal Chem; 2016 Sep; 88(17):8886-92. PubMed ID: 27476555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate ion.
    Deng J; Jiang Q; Wang Y; Yang L; Yu P; Mao L
    Anal Chem; 2013 Oct; 85(19):9409-15. PubMed ID: 24016028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric aminotriazole assay based on catalase deactivation-dependent longitudinal etching of gold nanorods.
    Li Y; Luo G; Qing Z; Li X; Zou Z; Yang R
    Mikrochim Acta; 2019 Jul; 186(8):565. PubMed ID: 31338677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multicolorimetric assay for rapid detection of Listeria monocytogenes based on the etching of gold nanorods.
    Liu Y; Wang J; Zhao C; Guo X; Song X; Zhao W; Liu S; Xu K; Li J
    Anal Chim Acta; 2019 Feb; 1048():154-160. PubMed ID: 30598145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free gold nanorods sensor array for colorimetric detection and discrimination of biothiols in human urine samples.
    Yuan D; Liu JJ; Yan HH; Li CM; Huang CZ; Wang J
    Talanta; 2019 Oct; 203():220-226. PubMed ID: 31202329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-sensitive non-aggregation colorimetric sensor for detection of iron based on the signal amplification effect of Fe3+ catalyzing H2O2 oxidize gold nanorods.
    Liu JM; Wang XX; Jiao L; Cui ML; Lin LP; Zhang LH; Jiang SL
    Talanta; 2013 Nov; 116():199-204. PubMed ID: 24148393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods.
    Tian F; Zhou J; Fu R; Cui Y; Zhao Q; Jiao B; He Y
    Food Chem; 2020 Aug; 320():126607. PubMed ID: 32203832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicolor Colormetric Biosensor for the Determination of Glucose based on the Etching of Gold Nanorods.
    Lin Y; Zhao M; Guo Y; Ma X; Luo F; Guo L; Qiu B; Chen G; Lin Z
    Sci Rep; 2016 Nov; 6():37879. PubMed ID: 27885274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A universal multicolor immunosensor for semiquantitative visual detection of biomarkers with the naked eyes.
    Ma X; Lin Y; Guo L; Qiu B; Chen G; Yang HH; Lin Z
    Biosens Bioelectron; 2017 Jan; 87():122-128. PubMed ID: 27526401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidase-like Nanozyme-Mediated Altering of the Aspect Ratio of Gold Nanorods for Breaking through H
    Fu R; Zhou J; Wang Y; Liu Y; Liu H; Yang Q; Zhao Q; Jiao B; He Y
    ACS Appl Bio Mater; 2021 Apr; 4(4):3539-3546. PubMed ID: 35014439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations.
    Peixoto LPF; Santos JFL; Andrade GFS
    Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-modulated optical property of gold nanorods for sensitive and colorimetric detection of thiourea in fruit juice.
    Zou BQ; Zhang HZ; Fu Z; Zhan T; Wang J
    Talanta; 2021 Apr; 225():121965. PubMed ID: 33592719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyte-restrained silver coating of gold nanostructures: an efficient strategy to advance multicolorimetric probes.
    Naseri A; Ghasemi F
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34740204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using L-arginine-functionalized gold nanorods for visible detection of mercury(II) ions.
    Guan J; Wang YC; Gunasekaran S
    J Food Sci; 2015 Apr; 80(4):N828-33. PubMed ID: 25754066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.