These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 3191104)

  • 1. 4-Bromo-2-octenoic acid specifically inactivates 3-ketoacyl-CoA thiolase and thereby fatty acid oxidation in rat liver mitochondria.
    Li JX; Schulz H
    Biochemistry; 1988 Aug; 27(16):5995-6000. PubMed ID: 3191104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase.
    Yang SY; He XY; Schulz H
    J Biol Chem; 1987 Sep; 262(27):13027-32. PubMed ID: 3654601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of 4-pentenoic acid and inhibition of thiolase by metabolites of 4-pentenoic acid.
    Schulz H
    Biochemistry; 1983 Apr; 22(8):1827-32. PubMed ID: 6133549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-Bromocrotonic acid, an effective inhibitor of fatty acid oxidation and ketone body degradation in rat heart mitochondria. On the rate-determining step of beta-oxidation and ketone body degradation in heart.
    Olowe Y; Schulz H
    J Biol Chem; 1982 May; 257(10):5408-13. PubMed ID: 7068598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between mitochondrial activation and toxicity of some substituted carboxylic acids.
    Yao KW; Mao LF; Luo MJ; Schulz H
    Chem Biol Interact; 1994 Mar; 90(3):225-34. PubMed ID: 8168171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-bromotiglic acid, a novel inhibitor of thiolases and a tool for assessing the cooperation between the membrane-bound and soluble beta-oxidation systems of rat liver mitochondria.
    Liang X; Schulz H
    Biochemistry; 1998 Nov; 37(44):15548-54. PubMed ID: 9799519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of fatty acid beta-oxidation in rat heart mitochondria.
    Wang HY; Baxter CF; Schulz H
    Arch Biochem Biophys; 1991 Sep; 289(2):274-80. PubMed ID: 1898072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of clofibrate treatment on acylcarnitine oxidation in isolated rat liver mitochondria.
    Kähönen M
    Med Biol; 1979 Feb; 57(1):58-65. PubMed ID: 35720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of mitochondrial fatty acid elongation by antibodies to 3-ketoacyl-CoA thiolase.
    Staack H; Davidson B; Schulz H
    Lipids; 1980 Mar; 15(3):175-8. PubMed ID: 7374368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetate generation in rat liver mitochondria; acetyl-CoA hydrolase activity is demonstrated by 3-ketoacyl-CoA thiolase.
    Yamashita H; Itsuki A; Kimoto M; Hiemori M; Tsuji H
    Biochim Biophys Acta; 2006 Jan; 1761(1):17-23. PubMed ID: 16476568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of thiolases from pig heart. Control of fatty acid oxidation in heart.
    Olowe Y; Schulz H
    Eur J Biochem; 1980 Aug; 109(2):425-9. PubMed ID: 6105961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and possible roles of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase in peroxisomes of an n-alkane-grown yeast, Candida tropicalis.
    Kurihara T; Ueda M; Tanaka A
    FEBS Lett; 1988 Feb; 229(1):215-8. PubMed ID: 2894324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of proteins into mitochondrial matrix. Evidence suggesting a common pathway for 3-ketoacyl-CoA thiolase and enzymes having presequences.
    Mori M; Matsue H; Miura S; Tatibana M; Hashimoto T
    Eur J Biochem; 1985 May; 149(1):181-6. PubMed ID: 2859988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of peroxisomal 3-ketoacyl-coA thiolase from rat liver.
    Miyazawa S; Furuta S; Osumi T; Hashimoto T; Ui N
    J Biochem; 1981 Aug; 90(2):511-9. PubMed ID: 6117552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of fatty acid oxidation by 2-bromooctanoate. Evidence for the enzymatic formation of 2-bromo-3-ketooctanoyl coenzyme A and the inhibition of 3-ketothiolase.
    Raaka BM; Lowenstein JM
    J Biol Chem; 1979 Jul; 254(14):6755-62. PubMed ID: 447747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of fatty acid oxidation in heart.
    Schulz H
    J Nutr; 1994 Feb; 124(2):165-71. PubMed ID: 8308565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria.
    Sabbagh E; Cuebas D; Schulz H
    J Biol Chem; 1985 Jun; 260(12):7337-42. PubMed ID: 3997873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
    Lopaschuk GD; Barr R; Thomas PD; Dyck JR
    Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon.
    Yang SY; Yang XY; Healy-Louie G; Schulz H; Elzinga M
    J Biol Chem; 1990 Jun; 265(18):10424-9. PubMed ID: 2191949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.