BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3191127)

  • 1. On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity.
    Mozes N; Léonard AJ; Rouxhet PG
    Biochim Biophys Acta; 1988 Nov; 945(2):324-34. PubMed ID: 3191127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relations between hydrophobicity tested by three methods and surface chemical composition of Escherichia coli.
    Latrache H; El GA; Karroua M; Hakkou A; Ait MH; El BA; Bourlioux P
    New Microbiol; 2002 Jan; 25(1):75-82. PubMed ID: 11837394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of X-ray photoelectron spectroscopy for the study of oral streptococcal cell surfaces.
    van der Mei HC; Busscher HJ
    Adv Dent Res; 1997 Nov; 11(4):388-94. PubMed ID: 9470495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface properties of top- and bottom-fermenting yeast.
    Dengis PB; Rouxhet PG
    Yeast; 1997 Aug; 13(10):931-43. PubMed ID: 9271108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical methods for characterization of microbial surfaces.
    Krekeler C; Ziehr H; Klein J
    Experientia; 1989 Dec; 45(11-12):1047-55. PubMed ID: 2689202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrophobicity of bacteria - an important factor in their initial adhesion at the air-water interface.
    Dahlbäck B; Hermansson M; Kjelleberg S; Norkrans B
    Arch Microbiol; 1981 Jan; 128(3):267-70. PubMed ID: 7212931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the physicochemical surface properties of Streptococcus rattus with those of other mutans streptococcal species.
    van der Mei HC; de Soet JJ; de Graaff J; Rouxhet PG; Busscher HJ
    Caries Res; 1991; 25(6):415-23. PubMed ID: 1810653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of aeration of Candida albicans during culturing on their surface aggregation in the presence of adhering Streptococcus gordonii.
    Millsap KW; Bos R; van der Mei HC; Busscher HJ
    FEMS Immunol Med Microbiol; 1999 Oct; 26(1):69-74. PubMed ID: 10518044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison between the elemental surface compositions and electrokinetic properties of oral streptococci with and without adsorbed salivary constituents.
    van der Mei ; Genet MJ; Weerkamp AH; Rouxhet PG; Busscher HJ
    Arch Oral Biol; 1989; 34(11):889-94. PubMed ID: 2610623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface charge and hydrophobicity of Campylobacter jejuni strains in relation to adhesion to epithelial HT-29 cells.
    Walan A; Kihlström E
    APMIS; 1988 Dec; 96(12):1089-96. PubMed ID: 3214584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial adhesion to glass and metal-oxide surfaces.
    Li B; Logan BE
    Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation of the surface properties of Bacillus licheniformis according to age, temperature and aeration.
    Herben PF; Mozes N; Rouxhet PG
    Biochim Biophys Acta; 1990 Feb; 1033(2):184-8. PubMed ID: 2306463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into bacterial contact angles: difficulties in defining hydrophobicity and surface Gibbs energy.
    Gallardo-Moreno AM; Navarro-Pérez ML; Vadillo-Rodríguez V; Bruque JM; González-Martín ML
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):373-80. PubMed ID: 21807482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins.
    Kaczorek E; Chrzanowski L; Pijanowska A; Olszanowski A
    Bioresour Technol; 2008 Jul; 99(10):4285-91. PubMed ID: 17959375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.
    Popovici J; White CP; Hoelle J; Kinkle BK; Lytle DA
    Colloids Surf B Biointerfaces; 2014 Jun; 118():126-32. PubMed ID: 24815929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydrophobic and electrostatic cell surface properties of bacteria on feeding rates of heterotrophic nanoflagellates.
    Matz C; Jürgens K
    Appl Environ Microbiol; 2001 Feb; 67(2):814-20. PubMed ID: 11157248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new plate-hanging method for biofilm quantification and its application to evaluate the role of surface hydrophobicity.
    Oda S; Tanikawa A
    J Microbiol Methods; 2022 Dec; 203():106608. PubMed ID: 36343771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations.
    Ojeda JJ; Romero-Gonzalez ME; Bachmann RT; Edyvean RG; Banwart SA
    Langmuir; 2008 Apr; 24(8):4032-40. PubMed ID: 18302422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of growth on surface charge and hydrophobicity of Staphylococcus aureus.
    Beck G; Puchelle E; Plotkowski C; Peslin R
    Ann Inst Pasteur Microbiol; 1988; 139(6):655-64. PubMed ID: 3252904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion.
    van Loosdrecht MC; Lyklema J; Norde W; Schraa G; Zehnder AJ
    Appl Environ Microbiol; 1987 Aug; 53(8):1898-901. PubMed ID: 3662520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.